[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Identification of Wiener systems with nonlinearity being piecewise-linear function

  • Published:
Science in China Series F: Information Sciences Aims and scope Submit manuscript

Abstract

Identification of the Wiener system with the nonlinear block being a piecewise-linear function is considered in the paper, generalizing the results given by H. E. Chen to the case of noisy observation. Recursive algorithms are given for estimating all unknown parameters contained in the system, and their strong consistency is proved. The estimation method is similar to that used by H. E. Chen for Hammerstein systems with the same nonlinearity. However, the assumption imposed by H. E. Chen on the availability of an upper bound for the nonsmooth points of the piecewise-linear function has been removed in this paper with the help of designing an additional algorithm for estimating the upper bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen H F. Recursive identification for Wiener model with discontinuous piece-wise linear function. IEEE Trans Autom Contorl, 2006, 51(3): 390–400

    Article  Google Scholar 

  2. Chen H F. Strong consistency of recursive identification for Hammerstein systems with discontinuous piecewise-linear memoryless block. IEEE Trans Autom Contorl, 2005, 50(10): 1612–1617

    Article  Google Scholar 

  3. Bai EW. Identification of linear system with hard input nonlinearities of konwn structure. Automatica, 2002, 38(5): 853–860

    Article  MATH  MathSciNet  Google Scholar 

  4. Vörös J. Parameter identification of discontinuous Hammerstein systems. Automatica, 1997, 33(6): 1141–1146

    Article  MATH  MathSciNet  Google Scholar 

  5. Vörös J. Parameter identification of Wiener systems with discontinuous nonlinearities systems. Syst Control Lett, 2001, 44: 363–372

    Article  MATH  Google Scholar 

  6. Vörös J. Recursive idetification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Trans Autom Control, 2003, 48(12): 2203–2206

    Article  Google Scholar 

  7. Chen H F. Pathwise convergence of recursive identification algorithms for Hammerstein systems. IEEE Trans Autom Control, 2004, 49(10): 1641–1649

    Article  Google Scholar 

  8. Greblicki W. Nonparameter approach to Wiener system identification. IEEE Trans Circuits Syst I Fundam Theory Appl, 1997, 44(6): 538–545

    Article  MathSciNet  Google Scholar 

  9. Greblicki W. Recursive identification of Wiener systems. Int J Appl Math Comput Sci, 2001, 11(4): 977–991

    MATH  MathSciNet  Google Scholar 

  10. Hu X L, Chen H F. Strong consistence of recursive identification forWiener systems. Automatica, 2005, 41(11): 1905–1916

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen H F. Stochastic Approximation and Its Applications. Dordrecht: Kluwer, 2002

    MATH  Google Scholar 

  12. Chow Y S, Teicher H. Probability Theory. New York: Springer, 1978

    MATH  Google Scholar 

  13. Chen H F, Guo L. Identification and Stochastic Adaptive Contorl. Boston: Birkhäuser, 1991

    Book  Google Scholar 

  14. Ljung L. System Identification. Upper Saddle River, NJ: Prentice-Hall, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen HanFu.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 60221301, 60334040, And 60474004)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Chen, H. & Fang, H. Identification of Wiener systems with nonlinearity being piecewise-linear function. Sci. China Ser. F-Inf. Sci. 51, 1–12 (2008). https://doi.org/10.1007/s11432-007-0071-0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-007-0071-0

Keywords

Navigation