[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Advances in urban information extraction from high-resolution remote sensing imagery

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

The study of urban area is one of the hottest research topics in the field of remote sensing. With the accumulation of high-resolution (HR) remote sensing data and emerging of new satellite sensors, HR observation of urban areas has become increasingly possible, which provides us with more elaborate urban information. However, the strong heterogeneity in the spectral and spatial domain of HR imagery brings great challenges to urban remote sensing. In recent years, numerous approaches were proposed to deal with HR image interpretation over complex urban scenes, including a series of features from low level to high level, as well as state-of-the-art methods depicting not only the urban extent, but also the intra-urban variations. In this paper, we aim to summarize the major advances in HR urban remote sensing from the aspects of feature representation and information extraction. Moreover, the future trends are discussed from the perspectives of methodology, urban structure and pattern characterization, big data challenge, and global mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bechtel B, Alexander P, Böhner J, Ching J, Conrad O, Feddema J, Mills G, See L, Stewart I. 2015. Mapping local climate zones for a worldwide database of the form and function of cities. ISPRS Int Geo-Inf, 4: 199–219

    Google Scholar 

  • Bechtel B, See L, Mills G, Foley M. 2016. Classification of local climate zones using SAR and multispectral data in an arid environment. IEEE J Sel Top Appl Earth Observ Remote Sens, 9: 3097–3105

    Google Scholar 

  • Benediktsson J A, Palmason J A, Sveinsson J R. 2005. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens, 43: 480–491

    Google Scholar 

  • Benediktsson J A, Pesaresi M, Arnason K. 2003. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Trans Geosci Remote Sens, 41: 1940–1949

    Google Scholar 

  • Bovolo F. 2009. A multilevel parcel-based approach to change detection in very high resolution multitemporal images. IEEE Geosci Remote Sens Lett, 6: 33–37

    Google Scholar 

  • Bruzzone L, Bovolo F. 2012. A novel framework for the design of change-detection systems for very-high-resolution remote sensing images. Proc IEEE, 101: 609–630

    Google Scholar 

  • Burkhard B, Kroll F, Nedkov S, Müller F. 2012. Mapping ecosystem service supply, demand and budgets. Ecol Indic, 21: 17–29

    Google Scholar 

  • Chanussot J, Benediktsson J A, Fauvel M. 2006. Classification of remote sensing images from urban areas using a fuzzy possibilistic model. IEEE Geosci Remote Sens Lett, 3: 40–44

    Google Scholar 

  • Chen J, Chen J, Liao A P, Cao X, Chen L J, Chen X H, He C Y, Han G, Peng S, Lu M, Zhang W W, Tong X H, Mills J. 2015. Global land cover mapping at 30 m resolution: A POK-based operational approach. ISPRS J Photogramm Remote Sens, 103: 7–27

    Google Scholar 

  • Chen X H, Cao X, Liao A P, Chen L J, Peng S, Lu M, Chen J, Zhang W W, Zhang H W, Han G, Wu H, Li R. 2016. Global mapping of artificial surfaces at 30-m resolution. Sci China Earth Sci, 59: 2295–2306

    Google Scholar 

  • Chini M, Pierdicca N, Emery W J. 2009. Exploiting SAR and VHR optical images to quantify damage caused by the 2003 Bam earthquake. IEEE Trans Geosci Remote Sens, 47: 145–152

    Google Scholar 

  • Dalla Mura M, Atli Benediktsson J, Waske B, Bruzzone L. 2010a. Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int J Remote Sens, 31: 5975–5991

    Google Scholar 

  • Dalla Mura M, Benediktsson J A, Waske B, Bruzzone L. 2010b. Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans Geosci Remote Sens, 48: 3747–3762

    Google Scholar 

  • Falco N, Mura M D, Bovolo F, Benediktsson J A, Bruzzone L. 2013. Change detection in VHR images based on morphological attribute profiles. IEEE Geosci Remote Sens Lett, 10: 636–640

    Google Scholar 

  • Fauvel M, Benediktsson J A, Chanussot J, Sveinsson J R. 2008. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans Geosci Remote Sens, 46: 3804–3814

    Google Scholar 

  • Florczyk A J, Ferri S, Syrris V, Kemper T, Halkia M, Soille P, Pesaresi M. 2016. A new European settlement map from optical remotely sensed data. IEEE J Sel Top Appl Earth Observ Remote Sens, 9: 1978–1992

    Google Scholar 

  • Gamba P, Herold M. 2009. Global Mapping of Human Settlement: Experiences, Datasets, and Prospects. Boca Raton (FL): CRC Press. 374

    Google Scholar 

  • Ghamisi P, Dalla Mura M, Benediktsson J A. 2015. A survey on spectral-spatial classification techniques based on attribute profiles. IEEE Trans Geosci Remote Sens, 53: 2335–2353

    Google Scholar 

  • Gong P, Li X, Zhang W. 2019a. 40-year (1978–2017) human settlement changes in China reflected by impervious surfaces from satellite remote sensing. Chin Sci Bull, 64: 756–763

    Google Scholar 

  • Gong P, Liang S, Carlton E J, Jiang Q, Wu J, Wang L, Remais J V. 2012. Urbanisation and health in China. Lancet, 379: 843–852

    Google Scholar 

  • Gong P, Liu H, Zhang M, Li C, Wang J, Huang H, Clinton N, Ji L, Li W, Bai Y, Chen B, Xu B, Zhu Z, Yuan C, Ping Suen H, Guo J, Xu N, Li W, Zhao Y, Yang J, Yu C, Wang X, Fu H, Yu L, Dronova I, Hui F, Cheng X, Shi X, Xiao F, Liu Q, Song L. 2019b. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Chin Sci Bull, 64: 370–373

    Google Scholar 

  • Gong P, Wang J, Yu L, Zhao Y, Zhao Y, Liang L, Niu Z, Huang X, Fu H, Liu S, Li C, Li X, Fu W, Liu C, Xu Y, Wang X, Cheng Q, Hu L, Yao W, Zhang H, Zhu P, Zhao Z, Zhang H, Zheng Y, Ji L, Zhang Y, Chen H, Yan A, Guo J, Yu L, Wang L, Liu X, Shi T, Zhu M, Chen Y, Yang G, Tang P, Xu B, Giri C, Clinton N, Zhu Z, Chen J, Chen J. 2013. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int J Remote Sens, 34: 2607–2654

    Google Scholar 

  • Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ, 202: 18–27

    Google Scholar 

  • Guo X, Huang X, Zhang L. 2014. Three-dimensional wavelet texture feature extraction and classification for multi hyperspectral imagery. IEEE Geosci Remote Sens Lett, 11: 2183–2187

    Google Scholar 

  • Haas J, Ban Y. 2017. Mapping and monitoring urban ecosystem services using multitemporal high-resolution satellite data. IEEE J Sel Top Appl Earth Observ Remote Sens, 10: 669–680

    Google Scholar 

  • Haralick R M, Shanmugam K, Dinstein I H. 1973. Textural features for image classification. IEEE Trans Syst Man Cybern, SMC-3: 610–621

    Google Scholar 

  • He C, Liu Z, Gou S, Zhang Q, Zhang J, Xu L. 2019. Detecting global urban expansion over the last three decades using a fully convolutional network. Environ Res Lett, 14: 034008

    Google Scholar 

  • Hu F, Xia G S, Hu J, Zhang L. 2015. Transferring deep convolutional neural networks for the scene classification of high-resolution remote sensing imagery. Remote Sens, 7: 14680–14707

    Google Scholar 

  • Hu X, Weng Q. 2011. Impervious surface area extraction from IKONOS imagery using an object-based fuzzy method. Geocarto Int, 26: 3–20

    Google Scholar 

  • Huang B, Zhao B, Song Y. 2018. Urban land-use mapping using a deep convolutional neural network with high spatial resolution multispectral remote sensing imagery. Remote Sens Environ, 214: 73–86

    Google Scholar 

  • Huang J K, Zhu L F, Deng X Z. 2007. Regional differences and determinants of built-up area expansion in China. Sci China Ser D-Earth Sci, 50: 1835–1843

    Google Scholar 

  • Huang X, Chen H, Gong J. 2018. Angular difference feature extraction for urban scene classification using ZY-3 multi-angle high-resolution satellite imagery. ISPRS J Photogramm Remote Sens, 135: 127–141

    Google Scholar 

  • Huang X, Guan X, Benediktsson J A, Zhang L, Li J, Plaza A, Dalla Mura M. 2014a. Multiple morphological profiles from multicomponent-base images for hyperspectral image classification. IEEE J Sel Top Appl Earth Observ Remote Sens, 7: 4653–4669

    Google Scholar 

  • Huang X, Han X, Zhang L, Gong J, Liao W, Benediktsson J A. 2016. Generalized differential morphological profiles for remote sensing image classification. IEEE J Sel Top Appl Earth Observ Remote Sens, 9: 1736–1751

    Google Scholar 

  • Huang X, Liu H, Zhang L. 2015a. Spatiotemporal detection and analysis of urban villages in mega city regions of China using high-resolution remotely sensed imagery. IEEE Trans Geosci Remote Sens, 53: 3639–3657

    Google Scholar 

  • Huang X, Liu X, Zhang L. 2014b. A multichannel gray level co-occurrence matrix for multi/hyperspectral image texture representation. Remote Sens, 6: 8424–8445

    Google Scholar 

  • Huang X, Wen D, Li J, Qin R. 2017a. Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multiview satellite imagery. Remote Sens Environ, 196: 56–75

    Google Scholar 

  • Huang X, Xie C, Fang X, Zhang L. 2015b. Combining pixel- and object-based machine learning for identification of water-body types from urban high-resolution remote-sensing imagery. IEEE J Sel Top Appl Earth Observ Remote Sens, 8: 2097–2110

    Google Scholar 

  • Huang X, Yuan W, Li J, Zhang L. 2017b. A new building extraction postprocessing framework for high-spatial-resolution remote-sensing imagery. IEEE J Sel Top Appl Earth Observ Remote Sens, 10: 654–668

    Google Scholar 

  • Huang X, Zhang L. 2009. Road centreline extraction from high-resolution imagery based on multiscale structural features and support vector machines. Int J Remote Sens, 30: 1977–1987

    Google Scholar 

  • Huang X, Zhang L. 2011. A multidirectional and multiscale morphological index for automatic building extraction from multispectral GeoEye-1 imagery. Photogramm Eng Remote Sens, 77: 721–732

    Google Scholar 

  • Huang X, Zhang L. 2012a. Morphological building/shadow index for building extraction from high-resolution imagery over urban areas. IEEE J Sel Top Appl Earth Observ Remote Sens, 5: 161–172

    Google Scholar 

  • Huang X, Zhang L. 2012b. A multiscale urban complexity index based on 3D wavelet transform for spectral-spatial feature extraction and classification: An evaluation on the 8-channel WorldView-2 imagery. Int J Remote Sens, 33: 2641–2656

    Google Scholar 

  • Huang X, Zhang L, Li P. 2007a. An adaptive multiscale information fusion approach for feature extraction and classification of IKONOS multi-spectral imagery over urban areas. IEEE Geosci Remote Sens Lett, 4: 654–658

    Google Scholar 

  • Huang X, Zhang L, Li P. 2007b. Classification and extraction of spatial features in urban areas using high-resolution multispectral imagery. IEEE Geosci Remote Sens Lett, 4: 260–264

    Google Scholar 

  • Kuang W H, Chen L J, Liu J Y, Xiang W N, Chi W F, Lu D S, Yang T R, Pan T, Liu A L. 2016. Remote sensing-based artificial surface cover classification in Asia and spatial pattern analysis. Sci China Earth Sci, 59: 1720–1737

    Google Scholar 

  • Kuang W H, Yang T R, Liu A L, Zhang C, Lu D S, Chi W F. 2017. An EcoCity model for regulating urban land cover structure and thermal environment: Taking Beijing as an example. Sci China Earth Sci, 60: 1098–1109

    Google Scholar 

  • Kumar A, Pandey A C, Jeyaseelan A T. 2012. Built-up and vegetation extraction and density mapping using WorldView-II. Geocarto Int, 27: 557–568

    Google Scholar 

  • Li J, Huang X, Gong J. 2019. Deep neural network for remote-sensing image interpretation: Status and perspectives. Natl Sci Rev, doi:https://doi.org/10.1093/nsr/nwz058

    Google Scholar 

  • Li Q, Huang X, Wen D, Liu H. 2017. Integrating multiple textural features for remote sensing image change detection. Photogramm Eng Remote Sens, 83: 109–121

    Google Scholar 

  • Li S, Dragicevic S, Castro F A, Sester M, Winter S, Coltekin A, Pettit C, Jiang B, Haworth J, Stein A, Cheng T. 2016. Geospatial big data handling theory and methods: A review and research challenges. ISPRS J Photogramm Remote Sens, 115: 119–133

    Google Scholar 

  • Li W, Chen C, Su H, Du Q. 2015. Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens, 53: 3681–3693

    Google Scholar 

  • Li X, Gong P, Liang L. 2015. A 30-year (1984-2013) record of annual urban dynamics of Beijing City derived from Landsat data. Remote Sens Environ, 166: 78–90

    Google Scholar 

  • Li X, Zhang C, Li W. 2017. Building block level urban land-use information retrieval based on Google Street View images. GISci Remote Sens, 54: 819–835

    Google Scholar 

  • Li Y S, Huang X, Liu H. 2017. Unsupervised deep feature learning for urban village detection from high-resolution remote sensing images. Photogramm Eng Remote Sens, 83: 567–579

    Google Scholar 

  • Liu C, Huang X, Wen D, Chen H, Gong J. 2017. Assessing the quality of building height extraction from ZiYuan-3 multi-view imagery. Remote Sens Lett, 8: 907–916

    Google Scholar 

  • Liu C, Huang X, Zhu Z, Chen H, Tang X, Gong J. 2019. Automatic extraction of built-up area from ZY3 multi-view satellite imagery: Analysis of 45 global cities. Remote Sens Environ, 226: 51–73

    Google Scholar 

  • Liu H, Huang X, Wen D, Li J. 2017. The use of landscape metrics and transfer learning to explore urban villages in China. Remote Sens, 9: 365

    Google Scholar 

  • Liu X, Hu G, Chen Y, Li X, Xu X, Li S, Pei F, Wang S. 2018. High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform. Remote Sens Environ, 209: 227–239

    Google Scholar 

  • Longbotham N, Chaapel C, Bleiler L, Padwick C, Emery W J, Pacifici F. 2012. Very high resolution multiangle urban classification analysis. IEEE Trans Geosci Remote Sens, 50: 1155–1170

    Google Scholar 

  • Ma Y, Wu H, Wang L, Huang B, Ranjan R, Zomaya A, Jie W. 2015. Remote sensing Big Data computing: Challenges and opportunities. Futur Gener Comp Syst, 51: 47–60

    Google Scholar 

  • Mallat S G. 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans Pattern Anal Mach Intell, 11: 674–693

    Google Scholar 

  • Marin C, Bovolo F, Bruzzone L. 2015. Building change detection in multitemporal very high resolution SAR images. IEEE Trans Geosci Remote Sens, 53: 2664–2682

    Google Scholar 

  • Marmanis D, Datcu M, Esch T, Stilla U. 2016. Deep learning earth observation classification using ImageNet pretrained networks. IEEE Geosci Remote Sens Lett, 13: 105–109

    Google Scholar 

  • Musci M, Feitosa R Q, Costa G A O P, Velloso M L F. 2013. Assessment of binary coding techniques for texture characterization in remote sensing imagery. IEEE Geosci Remote Sens Lett, 10: 1607–1611

    Google Scholar 

  • Myint S W, Gober P, Brazel A, Grossman-Clarke S, Weng Q. 2011. Perpixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens Environ, 115: 1145–1161

    Google Scholar 

  • Myint S W, Lam N S N, Tyler J M. 2004. Wavelets for urban spatial feature discrimination. Photogramm Eng Remote Sens, 70: 803–812

    Google Scholar 

  • Nogueira K, Penatti O A B, dos Santos J A. 2017. Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recognit, 61: 539–556

    Google Scholar 

  • Ojala T, Pietikäinen M, Harwood D. 1996. A comparative study of texture measures with classification based on featured distributions. Pattern Recognit, 29: 51–59

    Google Scholar 

  • Ojala T, Pietikainen M, Maenpaa T. 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell, 24: 971–987

    Google Scholar 

  • Ok A O. 2013. Automated detection of buildings from single VHR multispectral images using shadow information and graph cuts. ISPRS J Photogramm Remote Sens, 86: 21–40

    Google Scholar 

  • Ok A O, Senaras C, Yuksel B. 2013. Automated detection of arbitrarily shaped buildings in complex environments from monocular VHR optical satellite imagery. IEEE Trans Geosci Remote Sens, 51: 1701–1717

    Google Scholar 

  • Ouma Y O, Ngigi T G, Tateishi R. 2006. On the optimization and selection of wavelet texture for feature extraction from high-resolution satellite imagery with application towards urban-tree delineation. Int J Remote Sens, 27: 73–104

    Google Scholar 

  • Pacifici F, Chini M, Emery W J. 2009. A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification. Remote Sens Environ, 113: 1276–1292

    Google Scholar 

  • Pacifici F, Del Frate F. 2010. Automatic change detection in very high resolution images with pulse-coupled neural networks. IEEE Geosci Remote Sens Lett, 7: 58–62

    Google Scholar 

  • Peng F, Gong J, Wang L, Wu H, Liu P. 2017. A new stereo pair disparity index (SPDI) for detecting built-up areas from high-resolution stereo imagery. Remote Sens, 9: 633

    Google Scholar 

  • Peng F, Wang L, Gong J, Wu H. 2015. Development of a framework for stereo image retrieval with both height and planar features. IEEE J Sel Top Appl Earth Observ Remote Sens, 8: 800–815

    Google Scholar 

  • Pesaresi M, Benediktsson J A. 2001. A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE Trans Geosci Remote Sens, 39: 309–320

    Google Scholar 

  • Pesaresi M, Ehrilch D, Florczyk A, Freire S, Julea A, Kemper T, Soille P, Syrris V. 2015. GHS Built-up Grid, Derived from Landsat, Multitemporal (1975, 1990, 2000, 2014). European Commission, Joint Research Centre (JRC)

  • Pesaresi M, Ehrlich D, Caravaggi I, Kauffmann M, Louvrier C. 2011. Toward global automatic built-up area recognition using optical VHR imagery. IEEE J Sel Top Appl Earth Observ Remote Sens, 4: 923–934

    Google Scholar 

  • Pesaresi M, Gerhardinger A. 2011. Improved textural built-up presence index for automatic recognition of human settlements in arid regions with scattered vegetation. IEEE J Sel Top Appl Earth Observ Remote Sens, 4: 16–26

    Google Scholar 

  • Pesaresi M, Gerhardinger A, Kayitakire F Ç. 2008. A robust built-up area presence index by anisotropic rotation-invariant textural measure. IEEE J Sel Top Appl Earth Observ Remote Sens, 1: 180–192

    Google Scholar 

  • Pesaresi M, Huadong G, Blaes X, Ehrlich D, Ferri S, Gueguen L, Halkia M, Kauffmann M, Kemper T, Lu L, Marin-Herrera M A, Ouzounis G K, Scavazzon M, Soille P, Syrris V, Zanchetta L. 2013. A global human settlement layer from optical HR/VHR RS data: Concept and first results. IEEE J Sel Top Appl Earth Observ Remote Sens, 6: 2102–2131

    Google Scholar 

  • Poullis C. 2014. Tensor-Cuts: A simultaneous multi-type feature extractor and classifier and its application to road extraction from satellite images. ISPRS J Photogramm Remote Sens, 95: 93–108

    Google Scholar 

  • Puissant A, Hirsch J, Weber C. 2005. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. Int J Remote Sens, 26: 733–745

    Google Scholar 

  • Qian Y, Ye M, Zhou J. 2013. Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features. IEEE Trans Geosci Remote Sens, 51: 2276–2291

    Google Scholar 

  • Qian Y, Zhou W, Yan J, Li W, Han L. 2015. Comparing machine learning classifiers for object-based land cover classification using very high resolution imagery. Remote Sens, 7: 153–168

    Google Scholar 

  • Qin R. 2014. Change detection on LOD 2 building models with very high resolution spaceborne stereo imagery. ISPRS J Photogramm Remote Sens, 96: 179–192

    Google Scholar 

  • Qin R, Fang W. 2014. A hierarchical building detection method for very high resolution remotely sensed images combined with DSM using graph cut optimization. Photogramm Eng Remote Sens, 80: 873–883

    Google Scholar 

  • Reichstein M, Camps-Valls G, Stevens B, Jung M, Denzler J, Carvalhais N, Prabhat N. 2019. Deep learning and process understanding for data-driven Earth system science. Nature, 566: 195–204

    Google Scholar 

  • Schneider A, Friedl M A, Potere D. 2010. Mapping global urban areas using MODIS 500-m data: New methods and datasets based on ‘urban ecoregions’. Remote Sens Environ, 114: 1733–1746

    Google Scholar 

  • Sghaier M O, Lepage R. 2016. Road extraction from very high resolution remote sensing optical images based on texture analysis and beamlet transform. IEEE J Sel Top Appl Earth Observ Remote Sens, 9: 1946–1958

    Google Scholar 

  • Shanmugam L, Kaliaperumal V. 2015. Water flow based geometric active deformable model for road network. ISPRS J Photogramm Remote Sens, 102: 140–147

    Google Scholar 

  • Shao Z, Fu H, Fu P, Yin L. 2016. Mapping urban impervious surface by fusing optical and SAR data at the decision level. Remote Sens, 8: 945–966

    Google Scholar 

  • Shi X L, Nie S P, Ju W M, Yu L. 2016. Climate effects of the GlobeLand30 land cover dataset on the Beijing Climate Center climate model simulations. Sci China Earth Sci, 59: 1754–1764

    Google Scholar 

  • Song C, Yang F, Li P. 2010. Rotation invariant texture measured by local binary pattern for remote sensing image classification. Wuhan: 2010 Second International Workshop on Education Technology and Computer Science. 3: 3–6

    Google Scholar 

  • Stewart I D, Oke T R. 2012. Local climate zones for urban temperature studies. Bull Amer Meteorol Soc, 93: 1879–1900

    Google Scholar 

  • Su W, Li J, Chen Y, Liu Z, Zhang J, Low T M, Suppiah I, Hashim S A M. 2008. Textural and local spatial statistics for the object-oriented classification of urban areas using high resolution imagery. Int J Remote Sens, 29: 3105–3117

    Google Scholar 

  • Sun J, Zhang Y, Wu Z, Zhu Y, Yin X, Ding Z, Wei Z, Plaza J, Plaza A. 2019. An efficient and scalable framework for processing remotely sensed big data in cloud computing environments. IEEE Trans Geosci Remote Sens, 57: 4294–4308

    Google Scholar 

  • Tian J, Chen D M. 2007. Optimization in multi-scale segmentation of high-resolution satellite images for artificial feature recognition. Int J Remote Sens, 28: 4625–4644

    Google Scholar 

  • Tian J, Cui S, Reinartz P. 2014. Building change detection based on satellite stereo imagery and digital surface models. IEEE Trans Geosci Remote Sens, 52: 406–417

    Google Scholar 

  • Tuia D, Pacifici F, Kanevski M, Emery W J. 2009. Classification of very high spatial resolution imagery using mathematical morphology and support vector machines. IEEE Trans Geosci Remote Sens, 47: 3866–3879

    Google Scholar 

  • United Nations. 2018. 2018 Revision of World Urbanization Prospects. Population Division, Department of Economic and Social Affairs: United Nations Publications

  • Volpi M, Tuia D, Bovolo F, Kanevski M, Bruzzone L. 2013. Supervised change detection in VHR images using contextual information and support vector machines. Int J Appl Earth Observ Geoinf, 20: 77–85

    Google Scholar 

  • Voltersen M, Berger C, Hese S, Schmullius C. 2014. Object-based land cover mapping and comprehensive feature calculation for an automated derivation of urban structure types at block level. Remote Sens Environ, 154: 192–201

    Google Scholar 

  • Wang C, Middel A, Myint S W, Kaplan S, Brazel A J, Lukasczyk J. 2018. Assessing local climate zones in arid cities: The case of Phoenix, Arizona and Las Vegas, Nevada. ISPRS J Photogramm Remote Sens, 141: 59–71

    Google Scholar 

  • Wen D, Huang X, Liu H, Liao W, Zhang L. 2017. Semantic classification of urban trees using very high resolution satellite imagery. IEEE J Sel Top Appl Earth Observ Remote Sens, 10: 1413–1424

    Google Scholar 

  • Wen D, Huang X, Zhang L, Benediktsson J A. 2016. A novel automatic change detection method for urban high-resolution remotely sensed imagery based on multiindex scene representation. IEEE Trans Geosci Remote Sens, 54: 609–625

    Google Scholar 

  • Weng Q. 2012. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens Environ, 117: 34–49

    Google Scholar 

  • Xie C, Huang X, Zeng W, Fang X. 2016. A novel water index for urban high-resolution eight-band WorldView-2 imagery. Int J Digital Earth, 9: 925–941

    Google Scholar 

  • Yoo H Y, Lee K, Kwon B D. 2009. Quantitative indices based on 3D discrete wavelet transform for urban complexity estimation using remotely sensed imagery. Int J Remote Sens, 30: 6219–6239

    Google Scholar 

  • Yu X, Zhang B Q, Li Q, Chen J. 2016. A method characterizing urban expansion based on land cover map at 30 m resolution. Sci China Earth Sci, 59: 1738–1744

    Google Scholar 

  • Zhang C, Sargent I, Pan X, Li H, Gardiner A, Hare J, Atkinson P M. 2019. Joint Deep Learning for land cover and land use classification. Remote Sens Environ, 221: 173–187

    Google Scholar 

  • Zhang L, Huang X, Huang B, Li P. 2006. A pixel shape index coupled with spectral information for classification of high spatial resolution remotely sensed imagery. IEEE Trans Geosci Remote Sens, 44: 2950–2961

    Google Scholar 

  • Zhang L, Zhang L, Tao D, Huang X. 2013. A modified stochastic neighbor embedding for multi-feature dimension reduction of remote sensing images. ISPRS J Photogramm Remote Sens, 83: 30–39

    Google Scholar 

  • Zhang T, Huang X. 2018. Monitoring of urban impervious surfaces using time series of high-resolution remote sensing images in rapidly urbanized areas: A case study of Shenzhen. IEEE J Sel Top Appl Earth Observ Remote Sens, 11: 2692–2708

    Google Scholar 

  • Zhang T, Huang X, Wen D, Li J. 2017. Urban building density estimation from high-resolution imagery using multiple features and support vector regression. IEEE J Sel Top Appl Earth Observ Remote Sens, 10: 3265–3280

    Google Scholar 

  • Zhang X, Du S. 2015. A Linear Dirichlet Mixture Model for decomposing scenes: Application to analyzing urban functional zonings. Remote Sens Environ, 169: 37–49

    Google Scholar 

  • Zhang Y, Zhang H, Lin H. 2014. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens Environ, 141: 155–167

    Google Scholar 

  • Zhou P, Cheng G, Liu Z, Bu S, Hu X. 2016. Weakly supervised target detection in remote sensing images based on transferred deep features and negative bootstrapping. Multidim Syst Sign Process, 27: 925–944

    Google Scholar 

  • Zhu X X, Tuia D, Mou L, Xia G S, Zhang L, Xu F, Fraundorfer F. 2017. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci Remote Sens Mag, 5: 8–36

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41771360 & 41842035), the National Program for Support of Top-notch Young Professionals, the Hubei Provincial Natural Science Foundation of China (Grant No. 2017CFA029), the National Key Research and Development Program of China (Grant No. 2016YFB0501403), and the Shenzhen Science and Technology Program (Grant No. JCYJ20180306170645080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chun Liu or Xin Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, J., Liu, C. & Huang, X. Advances in urban information extraction from high-resolution remote sensing imagery. Sci. China Earth Sci. 63, 463–475 (2020). https://doi.org/10.1007/s11430-019-9547-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-019-9547-x

Keywords

Navigation