[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Inkjet printing for flexible electronics: Materials, processes and equipments

  • Review
  • SPECIAL TOPIC: Huazhong University of Science and Technology Mechanical Engineering
  • Published:
Chinese Science Bulletin

Abstract

Inkjet printing, known as digital writing technique, can directly deposit functional materials to form pattern onto substrate. This paper provides an overview of inkjet printing technologies for flexible electronics. Firstly, we highlight materials challenges in implementing flexible devices into practical application, especially for inkjet printing process. Then the micro/nano-patterning technologies of inkjet printing are discussed, including conventional inkjet printing techniques and electrohydrodynamic printing techniques. Thirdly, the related equipments on inkjet printing are shown. Finally, challenges for its future development are also discussed. The main purpose of the work is to condense the basic knowledge and highlight the challenges associated with the burgeoning and exciting field of inkjet printing for flexible electronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wong W S, Salleo A. Flexible Electronics: Materials and Applications. New York: Springer, 2009

    Google Scholar 

  2. Reuss R H, Chalamala B R, Moussessian A, et al. Macroelectronics: Perspectives on technology and applications. P IEEE, 2005, 93: 1239–1256

    Article  Google Scholar 

  3. Kim D H, Ahn J H, Choi W M, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320: 507–511

    Article  Google Scholar 

  4. Crawford G P. Flexible Flat Panel Displays. Chichester: John Wiley & Sons, Ltd, 2005

    Book  Google Scholar 

  5. Jang J. Displays develop a new flexibility. Mater Today, 2006, 9: 46–52

    Article  Google Scholar 

  6. Krebs F C. Fabrication and processing of polymer solar cells: A review of printing and coating techniques. Sol Energy Mater Sol Cells, 2009, 93: 394–412

    Article  Google Scholar 

  7. Mayer A C, Scully S R, Hardin B E, et al. Polymer-based solar cells. Mater Today, 2007, 10: 28–33

    Article  Google Scholar 

  8. Someya T, Kato Y, Sekitani T, et al. Conformable, flexible, large-area networks of pressure and thermal sensors with organic transistor active matrixes. Proc Natl Acad Sci USA, 2005, 102: 12321–12325

    Article  Google Scholar 

  9. Madden P G A. Development and modeling of conducting polymer actuators and the fabrication of a conducting polymer based feedback loop. Cambridge: Massachusetts Institute of Technology, 2003

    Google Scholar 

  10. Kim D H, Rogers J A. Stretchable electronics: Materials strategies and devices. Adv Mater, 2008, 20: 4887–4892

    Article  Google Scholar 

  11. Park S I, Ahn J H, Feng X, et al. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates. Adv Funct Mater, 2008, 18: 2673–2684

    Article  Google Scholar 

  12. Khang D Y, Jiang H, Huang Y, et al. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311: 208–212

    Article  Google Scholar 

  13. Jiang H, Khang D Y, Song J, et al. Finite deformation mechanics in buckled thin films on compliant supports. Prol Natl Acad Sci USA, 2007, 104: 15607–15612

    Article  Google Scholar 

  14. Lacour S P, Chan D, Wagner S, et al. Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl Phys Lett, 2006, 88: 204103

    Article  Google Scholar 

  15. Sun Y, Choi W M, Jiang H, et al. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotechnology, 2006, 1: 201–206

    Article  Google Scholar 

  16. Huang Z Y, Hong W, Suo Z. Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids, 2005, 53: 2101–2118

    Article  Google Scholar 

  17. Jiang H, Sun Y, Rogersc J A, et al. Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates. Int J Solids Struct, 2008, 45: 2014–2023

    Article  Google Scholar 

  18. Wagner S, Lacour S P, Jones J, et al. Electronic skin: Architecture and components. Physica E, 2004, 25: 326–334

    Article  Google Scholar 

  19. Gleskova H, Cheng I C, Wagner S, et al. Mechanics of thin-film transistors and solar cells on flexible substrates. Sol Energy, 2006, 80: 687–693

    Article  Google Scholar 

  20. Lacour S P, Wagner S, Huang Z, et al. Stretchable gold conductors on elastomeric substrates. Appl Phys Lett, 2003, 82: 2404–2406

    Article  Google Scholar 

  21. Xu W, Lu T. Flexible electronics system and their mechanical properties (in Chinese). Adv Mech, 2008, 48: 137–150

    Google Scholar 

  22. Huang Y, Yin Z, Xiong Y. Thermomechanical analysis of film-on-substrate system with temperature-dependent properties. J Appl Mech-T ASME, 2010, 77: 1–9

    Google Scholar 

  23. Huang Y, Yin Z, Xiong Y. Thermomechanical analysis of thin films on temperature-dependent elastomeric substrates in flexible heterogeneous electronics. Thin Solid Films, 2010, 518: 1698–1702

    Article  Google Scholar 

  24. Logothetidis S. Flexible organic electronic devices: Materials, process and applications. Mater Sci Eng B, 2008, 152: 96–104

    Article  Google Scholar 

  25. de Gans B J, Duineveld P C, Schubert U S. Inkjet printing of polymers: State of the art and future developments. Adv Mater, 2004, 16: 203–213

    Article  Google Scholar 

  26. Menard E, Meitl M A, Sun Y G, et al. Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem Rev, 2007, 107: 1117–1160

    Article  Google Scholar 

  27. Calvert P. Inkjet printing for materials and devices. Chem Mater, 2001, 13: 3299–3305

    Article  Google Scholar 

  28. Lan H, Ding Y, Liu H, et al. Review of template fabrication for nanoimprint lithography (in Chinese). J Mech Eng, 2009, 45: 1–13

    Google Scholar 

  29. Sirringhaus H, Kawase T, Friend R H, et al. High-resolution inkjet printing of all-polymer transistor circuits. Science, 2000, 290: 2123–2126

    Article  Google Scholar 

  30. Wang Y, Bokor J, Lee A. Maskless lithography using drop-on-demand inkjet printing method. P Soc Photo-Opt Ins, 2004, 5374: 628–636, 1110

    Google Scholar 

  31. Singh T B, Sariciftci N S. Progress in plastic electronics devices. Annu Rev Mater Res, 2006, 36: 199–230

    Article  Google Scholar 

  32. Kelley T W, Baude P F, Gerlach C, et al. Recent progress in organic electronics: Materials, devices, and processes. Chem Mater, 2004, 16: 4413–4422

    Article  Google Scholar 

  33. Reichmanis E, Katz H, Kloc C, et al. Plastic electronic devices: From materials design to device applications. Bell Labs Tech J, 2005, 10: 87–105

    Article  Google Scholar 

  34. Jang D, Kim D, Moon J. Influence of fluid physical properties on ink-jet printability. Langmuir, 2009, 25: 2629–2635

    Article  Google Scholar 

  35. Bergeron V, Bonn D, Martin J Y, et al. Controlling droplet deposition with polymer additives. Nature, 2000, 405: 772–775

    Article  Google Scholar 

  36. Martin G D, Hoath S D, Hutchings I M. Inkjet printing-the physics of manipulating liquid jets and drops. J Phys: Conf Ser, 2008, 105: 012001–012014

    Article  Google Scholar 

  37. de Gans B J, Schubert U S. Inkjet printing of polymer micro-arrays and libraries: Instrumentation, requirements, and perspectives. Macromol Rapid Comm, 2003, 24: 659–666

    Article  Google Scholar 

  38. Mabrook M F, Pearson C, Jombert A S, et al. The morphology, electrical conductivity and vapour sensing ability of inkjet-printed thin films of single-wall carbon nanotubes. Carbon, 2009, 47: 752–757

    Article  Google Scholar 

  39. Fan Z J, Wei T, Luo G H, et al. Fabrication and characterization of multi-walled carbon nanotubes-based ink. J Mater Sci, 2005, 40: 5075–5077

    Article  Google Scholar 

  40. Wei T, Ruan J, Fan Z J, et al. Preparation of a carbon nanotube film by ink-jet printing. Carbon, 2007, 45: 2712–2716

    Article  Google Scholar 

  41. Song J W, Kim Y S, Yoon Y H, et al. The production of transparent carbon nanotube field emitters using inkjet printing. Physica E, 2009, 41: 1513–1516

    Article  Google Scholar 

  42. Dror Y, Salalha W, Khalfin R L, et al. Carbon nanotubes embedded in oriented polymer nanofibers by electrospinning. Langmuir, 2003, 19: 7012–7020

    Article  Google Scholar 

  43. Zhang Q H, Chang Z J, Zhu M F, et al. Electrospun carbon nanotube composite nanofibres with uniaxially aligned arrays. Nanotechnology, 2007, 18: 115611–115616

    Article  Google Scholar 

  44. Magdassi S, Bassa A, Vinetsky Y, et al. Silver nanoparticles as pigments for water-based ink-jet inks. Chem Mater, 2003, 15: 2208–2217

    Article  Google Scholar 

  45. Lee H H, Chou K S, Huang K C. Inkjet printing of nanosized silver colloids. Nanotechnology, 2005, 16: 2436–2441

    Article  Google Scholar 

  46. Perelaer J, de Gans B J, Schubert U S. Ink-jet printing and microwave sintering of conductive silver tracks. Adv Mater, 2006, 18: 2101–2104

    Article  Google Scholar 

  47. Dearden A L, Smith P J, Shin D Y, et al. A low curing temperature silver ink for use in ink-jet printing and subsequent production of conductive tracks. Macromol Rapid Comm, 2005, 26: 315–318

    Article  Google Scholar 

  48. Liu Z, Wen F S, Li W L. Synthesis and electroluminescence properties of europium(III) complexes with new second ligands. Thin Solid Films, 2005, 478: 265–270

    Article  Google Scholar 

  49. Park B K, Kim D, Jeong S, et al. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films, 2007, 515: 7706–7711

    Article  Google Scholar 

  50. Woo K, Kim D, Kim J S, et al. Ink-jet printing of Cu-Ag-based highly conductive tracks on a transparent substrate. Langmuir, 2009, 25: 429–433

    Article  Google Scholar 

  51. Kamyshny A, Ben-Moshe M, Aviezer S, et al. Ink-jet printing of metallic nanoparticles and microemulsions. Macromol Rapid Comm, 2005, 26: 281–288

    Article  Google Scholar 

  52. Kim D, Moon J. Highly conductive ink jet printed films of nanosilver particles for printable electronics. Electrochem Solid ST, 2005, 8: J30–J33

    Article  Google Scholar 

  53. Hsu S L C, Wu R T. Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects. Mater Lett, 2007, 61: 3719–3722

    Article  Google Scholar 

  54. Wu R T, Hsu S L C. Preparation of highly concentrated and stable suspensions of silver nanoparticles by an organic base catalyzed reduction reaction. Mater Res Bull, 2008, 43: 1276–1281

    Article  Google Scholar 

  55. Wu J T, Hsu S L C, Tsai M H, et al. Conductive silver patterns via ethylene glycol vapor reduction of ink-jet printed silver nitrate tracks on a polyimide substrate. Thin Solid Films, 2009, 517: 5913–5917

    Article  Google Scholar 

  56. Lee D Y, Shin Y S, Park S E, et al. Electrohydrodynamic printing of silver nanoparticles by using a focused nanocolloid jet. Appl Phys Lett, 2007, 90: 0819051–0819053

    Google Scholar 

  57. Lee D Y, Lee J C, Shin Y S, et al. Structuring of conductive silver line by electrohydrodynamic jet printing and its electrical characterization. J Phys: Conf Ser, 2007, 142: 012039

    Article  Google Scholar 

  58. Chronakis I S, Grapenson S, Jakob A. Conductive polypyrrole nanofibers via electrospinning: Electrical and morphological properties. Polymer, 2006, 47: 1597–1603

    Article  Google Scholar 

  59. Shen W F, Zhao Y, Zhang C B. The preparation of ZnO based gas-sensing thin films by ink-jet printing method. Thin Solid Films, 2005, 483: 382–387

    Article  Google Scholar 

  60. Choi J H, Khang D Y, Myoung J M. Fabrication and characterization of ZnO nanowire transistors with organic polymer as a dielectric layer. Solid State Commun, 2008, 148: 126–130

    Article  Google Scholar 

  61. Yang Y J, Jiang Y D, Xu J H, et al. Conducting PEDOT-PSS composite films assembled by LB technique. Colloid Surface A, 2007, 302: 157–161

    Article  Google Scholar 

  62. Jang J, Chang M, Yoon H. Chemical sensors based on highly conductive poly(3,4-ethylenedioxythiophene) nanorods. Adv Mater, 2005, 17: 1616–1620

    Article  Google Scholar 

  63. Ballarin B, Fraleoni-Morgera A, Frascaro D, et al. Thermal inkjet microdeposition of PEDOT: PSS on ITO-coated glass and characterization of the obtained film. Synthetic Met, 2004, 146: 201–205

    Article  Google Scholar 

  64. Eom S H, Senthilarasu S, Uthirakumar P, et al. Polymer solar cells based on inkjet-printed PEDOT:PSS layer. Org Electron, 2009, 10: 536–542

    Article  Google Scholar 

  65. Hohnholz D, Okuzaki H, MacDiarmid A G. Plastic electronic devices through line patterning of conducting polymers. Adv Funct Mater, 2005, 15: 51–56

    Article  Google Scholar 

  66. Kwon I W, Son H J, Kim W Y, et al. Thermistor behavior of PEDOT: PSS thin film. Synthetic Met, 2009, 159: 1174–1177

    Article  Google Scholar 

  67. Jeong S, Kim D, Moon J. Ink-jet-printed organic-inorganic hybrid dielectrics for organic thin-film transistors. J Phys Chem C, 2008, 112: 5245–5249

    Article  Google Scholar 

  68. Xie X L, Mai Y W, Zhou X P. Dispersion and alignment of carbon nanotubes in polymer matrix: A review. Mat Sci Eng R, 2005, 49: 89–112

    Article  Google Scholar 

  69. Lin H W, Hwu W H, Ger M D. The dispersion of silver nanoparticles with physical dispersal procedures. J Mater Process Tech, 2008, 206: 56–61

    Article  Google Scholar 

  70. Hon K K B, Li L, Hutchings I M. Direct writing technology-Advances and developments. Cirp Ann-Manuf Techn, 2008, 57: 601–620

    Article  Google Scholar 

  71. Le H P. Progress and trends in ink-jet printing technology. J Imaging Sci Techn, 1998, 42: 49–62

    Google Scholar 

  72. Paul K E, Wong W S, Ready S E, et al. Additive jet printing of polymer thin-film transistors. Appl Phys Lett, 2003, 83: 2070–2072

    Article  Google Scholar 

  73. Wang Y, Bokor J. Ultra-high-resolution monolithic thermal bubble inkjet print head. J Micro-Nanolith Mem, 2007, 6: 043009

    Google Scholar 

  74. Dong H M, Carr W W, Morris J F. An experimental study of drop-on-demand drop formation. Phys Fluids, 2006, 18: 0721021–0721016

    Article  Google Scholar 

  75. Noguchi Y, Sekitani T, Yokota T, et al. Direct inkjet printing of silver electrodes on organic semiconductors for thin-film transistors with top contact geometry. Appl Phys Lett, 2008, 93: 0433031–0433033

    Google Scholar 

  76. Duineveld P C. The stability of ink-jet printed lines of liquid with zero receding contact angle on a homogeneous substrate. J Fluid Mech, 2003, 477: 175–200

    Article  Google Scholar 

  77. Lim J A, Lee H S, Lee W H, et al. Control of the morphology and structural development of solution-processed functionalized acenes for high-performance organic transistors. Adv Funct Mater, 2009, 19: 1515–1525

    Article  Google Scholar 

  78. Roy S. Fabrication of micro- and nano-structured materials using mask-less processes. J Phys D Appl Phys, 2007, 40: R413–R426

    Article  Google Scholar 

  79. Sirringhaus H, Kawase T, Friend R H. High-resolution ink-jet printing of all-polymer transistor circuits. MRS Bull, 2001, 26: 539–543

    Google Scholar 

  80. Li S P, Newsome C J, Kugler T, et al. Polymer thin film transistors with self-aligned gates fabricated using ink-jet printing. Appl Phys Lett, 2007, 90: 1721031–1721033

    Google Scholar 

  81. Noh Y Y, Zhao N, Caironi M, et al. Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat Nanotechnol, 2007, 2: 784–789

    Article  Google Scholar 

  82. Bao Z N. Fine printing. Nat Mater, 2004, 3: 137–138

    Article  Google Scholar 

  83. Sele C W, von Werne T, Friend R H, et al. Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution. Adv Mater, 2005, 17: 997–1001

    Article  Google Scholar 

  84. Ko S H, Pan H, Grigoropoulos C P, et al. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology, 2007, 18: 3452021–3452028

    Article  Google Scholar 

  85. Park J U, Hardy M, Kang S J, et al. High-resolution electrohy-drodynamic jet printing. Nat Mater, 2007, 6: 782–789

    Article  Google Scholar 

  86. Jaworek A, Sobczyk A T. Electrospraying route to nanotechnology: An overview. J Electrostat, 2008, 66: 197–219

    Article  Google Scholar 

  87. Kim J, Oh H, Kim S S. Electrohydrodynamic drop-on-demand patterning in pulsed cone-jet mode at various frequencies. J Aerosol Sci, 2008, 39: 819–825

    Article  Google Scholar 

  88. Basaran O A. Small-scale free surface flows with breakup: Drop formation and emerging applications. Aiche J, 2002, 48: 1842–1848

    Article  Google Scholar 

  89. Jaworek A, Krupa A. Classification of the modes of EHD spraying. J Aerosol Sci, 1999, 30: 873–893

    Article  Google Scholar 

  90. Paine M D, Alexander M S, Smith K L, et al. Controlled electrospray pulsation for deposition of femtoliter fluid droplets onto surfaces. J Aerosol Sci, 2007, 38: 315–324

    Article  Google Scholar 

  91. Li J L. On the meniscus deformation when the pulsed voltage is applied. J Electrostat, 2006, 64: 44–52

    Article  Google Scholar 

  92. Teo W E, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology, 2006, 17: R89–R106

    Article  Google Scholar 

  93. Choi J, Kim Y J, Lee S, et al. Drop-on-demand printing of conductive ink by electrostatic field induced inkjet head. Appl Phys Lett, 2008, 93: 1935081–1935083

    Google Scholar 

  94. Reneker D H, Yarin A L. Electrospinning jets and polymer nanofibers. Polymer, 2008, 49: 2387–2425

    Article  Google Scholar 

  95. Jayasinghe S N, Dorey R A, Edirisinghe M J, et al. Preparation of lead zirconate titanate nano-powder by electrohydrodynamic atomization. Appl Phys A Mater, 2005, 80: 723–725

    Article  Google Scholar 

  96. Jaworek A. Electrospray droplet sources for thin film deposition. J Mater Sci, 2007, 42: 266–297

    Article  Google Scholar 

  97. Saf R, Goriup M, Steindl T, et al. Thin organic films by atmospheric-pressure ion deposition. Nat Mater, 2004, 3: 323–329

    Article  Google Scholar 

  98. Salata O V. Tools of nanotechnology: Electrospray. Curr Nanosci, 2005, 1: 25–33

    Article  Google Scholar 

  99. Yu F X, Cui J Z, Ranganathan S, et al. Fundamental differences between spray forming and other semisolid processes. Mat Sci Eng A-Struct, 2001, 304: 621–626

    Article  Google Scholar 

  100. Chen X, Cheng J, Yin X. Advances and applications of electrohy-drodynamics. Chinese Sci Bull, 2003, 48: 1055–1063

    Google Scholar 

  101. Fujihara K, Kumar A, Jose R, et al. Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell. Nanotechnology, 2007, 18: 3657091–3657095

    Article  Google Scholar 

  102. Cich M, Kim K, Choi H, et al. Deposition of (Zn,Mn)(2)SiO4 for plasma display panels using charged liquid cluster beam. Appl Phys Lett, 1998, 73: 2116–2118

    Article  Google Scholar 

  103. Huang Z M, Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol, 2003, 63: 2223–2253

    Article  Google Scholar 

  104. MacDiarmid A G. “Synthetic metals”: A novel role for organic polymers (Nobel lecture). Angew Chem Int Edit, 2001, 40: 2581–2590

    Article  Google Scholar 

  105. Sun D, Chang C, Li S, et al. Near-field electrospinning. Nano Lett, 2006, 6: 839–842

    Article  Google Scholar 

  106. Yarin A L, Zussman E. Upward needleless electrospinning of multiple nanofibers. Polymer, 2004, 45: 2977–2980

    Article  Google Scholar 

  107. Hellmann C, Belardi J, Dersch R, et al. High precision deposition electrospinning of nanofibers and nanofiber nonwovens. Polymer, 2009, 50: 1197–1205

    Article  Google Scholar 

  108. Fang J, Niu H, Lin T, et al. Applications of electrospun nanofibers. Chinese Sci Bull, 2008, 53: 2265–2286

    Article  Google Scholar 

  109. Jeong J S, Jeon S Y, Lee T Y, et al. Fabrication of MWNTs/nylon conductive composite nanofibers by electrospinning. Diam Relat Mater, 2006, 15: 1839–1843

    Article  Google Scholar 

  110. Sekitani T, Noguchi Y, Zschieschang U, et al. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Prol Natl Acad Sci USA, 2008, 105: 4976–4980

    Article  Google Scholar 

  111. Choi H K, Park J U, Park O O, et al. Scaling laws for jet pulsations associated with high-resolution electrohydrodynamic printing. Appl Phys Lett, 2008, 92: 1231091–1231093

    Google Scholar 

  112. Lee J S, Kim S Y, Kim Y J, et al. Design and evaluation of a silicon based multi-nozzle for addressable jetting using a controlled flow rate in electrohydrodynamic jet printing. Appl Phys Lett, 2008, 93: 2431141–2431143

    Google Scholar 

  113. Yang D, Wang Y, Zhang D. et al. Control of the morphology of micro/nano-structures of polycarbonate via electrospinning. Chinese Sci Bull, 2009, 54: 2911–2917

    Article  Google Scholar 

  114. Kim S G, Choi K H, Eun J H, et al. Effects of additives on properties of MgO thin films by electrostatic spray deposition. Thin Solid Films, 2000, 377: 694–698

    Article  Google Scholar 

  115. Sorensen G. Ion bombardment of electrosprayed coatings: An alternative to reactive sputtering. Surf Coat Tech, 1999, 112: 221–225

    Article  Google Scholar 

  116. Dong H M, Carr W W, Morris J F. Visualization of drop-on-demand inkjet: Drop formation and deposition. Revi Sci Instrum, 2006, 77: 0851011–0851018

    Google Scholar 

  117. Bhatti A R, Mott M, Evans J R G, et al. PZT pillars for 1-3 composites prepared by ink-jet printing. J Mater Sci Lett, 2001, 20: 1245–1248

    Article  Google Scholar 

  118. Guo T F, Chang S C, Pyo S, et al. Vertically integrated electronic circuits via a combination of self-assembled polyelectrolytes, ink-jet printing, and electroless metal plating processes. Langmuir, 2002, 18: 8142–8147

    Article  Google Scholar 

  119. Kordas K, Mustonen T, Toth G, et al. Inkjet printing of electrically conductive patterns of carbon nanotubes. Small, 2006, 2: 1021–1025

    Article  Google Scholar 

  120. Yoshioka Y, Jabbour G E. Desktop inkjet printer as a tool to print conducting polymers. Synthetic Met, 2006, 156: 779–783

    Article  Google Scholar 

  121. Ding H, Xiong Z. Motion stages for electronic packaging design and control. IEEE Robot Autom Mag, 2006, 13: 51–61

    Google Scholar 

  122. Chen C H, Saville D A, Aksay I A. Scaling laws for pulsed electrohydrodynamic drop formation. Appl Phys Lett, 2006, 89: 1241031–1241033

    Google Scholar 

  123. Jaworek A, Balachandran W, Lackowski M, et al. Multi-nozzle electrospray system for gas cleaning processes. J Electrostat, 2006, 64: 194–202

    Article  Google Scholar 

  124. Ju J, Yamagata Y, Higuchi T. Thin-film fabrication method for organic light-emitting diodes using electrospray deposition. Adv Mater, 2009, 21: 1–5

    Article  Google Scholar 

  125. Darty M A. Methods and apparatus for electrohydrodynamic ejection. United States Patent, 2001

  126. Lee W S, Jo S M, Go S G, et al. Apparatus of polymer web by electrospinning process. United States Patent, 2003

  127. Lo C Y, Hiitola-Keinanen J, Huttunen O H, et al. Novel roll-to-roll lift-off patterned active-matrix display on flexible polymer substrate. Microelectron Eng, 2009, 86: 979–983

    Article  Google Scholar 

  128. Ahn S H, Guo L J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Adv Mater, 2008, 20: 2044–2049

    Article  Google Scholar 

  129. Jain K, Klosner M, Zemel M, et al. Flexible electronics and displays: High-resolution, roll-to-roll, projection lithography and photoablation processing technologies for high-throughput production. P IEEE, 2005, 93: 1500–1510

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ZhouPing Yin or YongAn Huang.

About this article

Cite this article

Yin, Z., Huang, Y., Bu, N. et al. Inkjet printing for flexible electronics: Materials, processes and equipments. Chin. Sci. Bull. 55, 3383–3407 (2010). https://doi.org/10.1007/s11434-010-3251-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3251-y

Keywords

Navigation