[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Composite Anti-Disturbance Control of Hidden Semi-Markov Jump Systems via Disturbance Observer

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper focuses on the disturbance suppression issue of hidden semi-Markov jump systems leveraging composite control. The system consists of a semi-Markov layer and an observed mode sequence layer, and it is subject to a matched disturbance generated by an exogenous system and a mismatched disturbance that is norm bounded. The proposal is to design a composite controller based on a disturbance observer to counteract and attenuate the disturbances effectively. By constructing a special Lyapunov function comparison point, the exponential stability is analyzed with the stability criterion in the form of linear matrix inequality is established. Two simulation examples are provided to demonstrate the practical merits of the composite controller relative to the single H control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li F B, Shi P, Wu L G, et al., Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems, IEEE Trans. Industrial Elec., 2014, 62(4): 2330–2340.

    Article  Google Scholar 

  2. Zhang L C, Lam H K, Sun Y H, et al., Fault detection for fuzzy semi-Markov jump systems based on interval type-2 fuzzy approach, IEEE Trans. Fuzzy Syst., 2019, 28(10): 2375–2388.

    Article  Google Scholar 

  3. Shen H, Hu X H, Wang J, et al., Non-fragile H synchronization for Markov jump singularly perturbed coupled neural networks subject to double-layer switching regulation, IEEE Trans. Neural Netw. Learn. Syst., 2021, 34(5): 2682–2692.

    Article  MathSciNet  Google Scholar 

  4. Wu X T, Shi P, Tang Y, et al., Stability analysis of semi-Markov jump stochastic nonlinear systems, IEEE Trans. Autom. Control, 2021, 67(4): 2084–2091.

    Article  MathSciNet  MATH  Google Scholar 

  5. Lin Y Q, Zhuang G M, Xia J W, et al., Sampled-data H dynamic output feedback controller design for fuzzy markovian jump systems, Journal of Systems Science & Complexity, 2023, 36(1): 239–256.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cai B, Zhang L X, and Shi Y, Observed-mode-dependent state estimation of hidden semi-Markov jump linear systems, IEEE Trans. Autom. Control, 2019, 65(1): 442–449.

    Article  MathSciNet  MATH  Google Scholar 

  7. Tian Y X, Yan H C, Dai W, et al., Observed-based asynchronous control of linear semi-Markov jump systems with time-varying mode emission probabilities, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2020, 67(12): 3147–3151.

    Google Scholar 

  8. Zhang L X, Cai B, and Shi Y, Stabilization of hidden semi-Markov jump systems: Emission probability approach, Automatica, 2019, 101(12): 87–95.

    Article  MathSciNet  MATH  Google Scholar 

  9. Xue M, Yan H C, Zhang H, et al., Hidden-Markov-model-based asynchronous H tracking control of fuzzy Markov jump systems, IEEE Trans. Fuzzy Syst., 2020, 29(5): 1081–1092.

    Article  Google Scholar 

  10. Shen H, Dai M C, Luo Y P, et al., Fault-tolerant fuzzy control for semi-Markov jump nonlinear systems subject to incomplete SMK and actuator failures, IEEE Trans. Fuzzy Syst., 2020, 29(10): 3043–3053.

    Article  Google Scholar 

  11. Wang J, Xia J W, Shen H, et al., H synchronization for fuzzy Markov jump chaotic systems with piecewise-constant transition probabilities subject to PDT switching rule, IEEE Trans. Fuzzy Syst., 2020, 29(10): 3082–3092.

    Article  Google Scholar 

  12. Zhang L X, Zhu Y Z, Shi P, et al., Time-Dependent Switched Discrete-Time Linear Systems: Control and Filtering, Springer, Switzerland, 2016.

    Book  MATH  Google Scholar 

  13. Zhang L X, Leng Y S, and Colaneri P, Stability and stabilization of discrete-time semi-Markov jump linear systems via semi-Markov kernel approach, IEEE Trans. Autom. Control, 2016, 61(2): 503–508.

    MathSciNet  MATH  Google Scholar 

  14. Wang B and Zhu Q X, Stability analysis of discrete time semi-Markov jump linear systems, IEEE Trans. Autom. Control, 2020, 65(12): 5415–5421.

    Article  MathSciNet  MATH  Google Scholar 

  15. Shen H, Su L, and Park J H, Reliable mixed H/passive control for T-S fuzzy delayed systems based on a semi-Markov jump model approach, Fuzzy Sets and Systems, 2017, 314: 79–98.

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu Z W, Wu Z G, Su H Y, et al., Energy-to-peak filtering of semi-Markov jump systems with mismatched modes, IEEE Trans. Autom. Control, 2019, 65(10): 4356–4361.

    Article  MathSciNet  MATH  Google Scholar 

  17. Xin B and Zhao D Z, Generalized H2 control of the linear system with semi-Markov jumps, Int. J. Robust Nonlin. Control, 2021, 31(3): 1005–1020.

    Article  MATH  Google Scholar 

  18. Dong S L, Chen G R, Liu M Q, et al., Robust adaptive H control for networked uncertain semi-Markov jump nonlinear systems with input quantization, Sci. China Inf. Sci., 2022, 65(8): 1–2.

    Article  MathSciNet  Google Scholar 

  19. Yang T, Zhang L X, and Lam H K, H fuzzy control of semi-Markov jump nonlinear systems under σ-error mean square stability, Int. J. Systems Sci., 2017, 48(11): 2291–2299.

    Article  MathSciNet  MATH  Google Scholar 

  20. Cai B, Zhang L X, and Shi Y, Control synthesis of hidden semi-Markov uncertain fuzzy systems via observations of hidden modes, IEEE Trans. Cybern., 2019, 50(8): 3709–3718.

    Article  Google Scholar 

  21. Gao X B, Deng F Q, Zhang H Y, et al., Reliable H filtering of semi-Markov jump systems over a lossy network, J. Franklin Inst., 2021, 358(8): 4528–4545.

    Article  MathSciNet  MATH  Google Scholar 

  22. Liu Y L, Wang H, and Guo L, Composite robust H control for uncertain stochastic nonlinear systems with state delay via a disturbance observer, IEEE Trans. Autom. Control, 2018, 63(12): 4345–4352.

    Article  MathSciNet  MATH  Google Scholar 

  23. Li S H, Yang J, Chen W H, et al., Disturbance Observer-Based Control: Methods and Applications, CRC Press, Boca Raton, 2014.

    Google Scholar 

  24. Guo L and Cao S Y, Anti-disturbance control theory for systems with multiple disturbances: A survey, ISA Trans., 2014, 53(4): 846–849.

    Article  Google Scholar 

  25. Chen W H, Yang J, Guo L, et al., Disturbance-observer-based control and related methods — An overview, IEEE Trans. Industrial Elec., 2015, 63(2): 1083–1095.

    Article  Google Scholar 

  26. Sariyildiz E, Oboe R, and Ohnishi K, Disturbance observer-based robust control and its applications: 35th anniversary overview, IEEE Trans. Industrial Elec., 2019, 67(3): 2042–2053.

    Article  Google Scholar 

  27. Chen J, Sun J, and Wang G, From unmanned systems to autonomous intelligent systems, Engineering, 2022, 12: 16C19.

    Google Scholar 

  28. Guo L and Chen W H, Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach, Int. J. Robust Nonlin. Control, 2005, 15(3): 109–125.

    Article  MathSciNet  MATH  Google Scholar 

  29. Yao X M and Guo L, Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer, Automatica, 2013, 49(8): 2538–2545.

    Article  MathSciNet  MATH  Google Scholar 

  30. Yang Y Z, Liu F, Yang H Y, et al., Distributed finite-time integral sliding-mode control for multi-agent systems with multiple disturbances based on nonlinear disturbance observers, Journal of Systems Science & Complexity, 2021, 34(3): 995–1013.

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang Y H, Wang W, Sun J, et al., Distributed observer-based adaptive fuzzy consensus of nonlinear multi-agent systems under DoS attacks and output disturbance, IEEE Trans. Cybern., 2023, 53(3): 1994–2004.

    Article  Google Scholar 

  32. Sun H B and Hou L L, Composite anti-disturbance control for a discrete-time time-varying delay system with actuator failures based on a switching method and a disturbance observer, Nonlin. Anal. Hybrid. Syst., 2014, 14: 126–138.

    Article  MathSciNet  MATH  Google Scholar 

  33. Huang Z G, Xia J W, Wang J, et al., Mixed H/l2-l state estimation for switched genetic regulatory networks subject to packet dropouts: A persistent dwell-time switching mechanism, Appl. Math. Comput., 2019, 355: 198–212.

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang J, Huang Z G, Wu Z G, et al., Extended dissipative control for singularly perturbed PDT switched systems and its application, IEEE Trans. Circuits Syst. I, Reg. Papers, 2020, 67(12): 5281–5289.

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu X M, Xia J W, Wang J, et al., Interval type-2 fuzzy passive filtering for nonlinear singularly perturbed PDT-switched systems and its application, Journal of Systems Science & Complexity, 2021, 34(6): 2195–2218.

    Article  MathSciNet  MATH  Google Scholar 

  36. Chen G L, Xia J W, Park J H, et al., Sampled-data synchronization of stochastic Markovian jump neural networks with time-varying delay, IEEE Trans. Neural Netw. Learn. Syst., 2021, 33(8): 3829–3841.

    Article  MathSciNet  Google Scholar 

  37. Chen G L, Xia J W, Park J H, et al., Robust sampled-data control for switched complex dynamical networks with actuators saturation, IEEE Trans. Syst., Man, Cybern., 2021, 52(10): 10909–10923.

    Google Scholar 

  38. Wang G and Zhang Q, Robust control of uncertain singular stochastic systems with Markovian switching via proportionalCderivative state feedback, IET Control Theory Appl., 2012, 6(8): 1089–1096.

    Article  MathSciNet  Google Scholar 

  39. Wu Z G, Shen Y, Shi P, et al., H control for 2-D Markov jump systems in Roesser model, IEEE Trans. Autom. Control, 2018, 64(1): 427–432.

    Article  MathSciNet  MATH  Google Scholar 

  40. Guo H B, Pang Z H, Sun J, et al., Detection of stealthy false data injection attacks against cyber-physical systems: A stochastic coding scheme, Journal of Systems Science & Complexity, 2022, 35(5): 1668–1684.

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang X, Sun J, Wang G, et al., Improved stability conditions for time-varying delay systems via relaxed Lyapunov functionals, Int. J. Control, 2022, 96(6): 1568–1581.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Sun.

Ethics declarations

SUN Jian is an editorial board member for Journal of Systems Science & Complexity and was not involved in the editorial review or the decision to publish this article. All authors declare that there are no competing interests.

Additional information

This research was supported by the National Natural Science Foundation of China under Grants Nos. 62173034, 61925303, and 62088101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men, Y., Sun, J. Composite Anti-Disturbance Control of Hidden Semi-Markov Jump Systems via Disturbance Observer. J Syst Sci Complex 36, 2255–2273 (2023). https://doi.org/10.1007/s11424-023-2407-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-023-2407-2

Keywords

Navigation