[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fuzzy Static Output Feedback H Control for Nonlinear Systems Subject to Parameter Uncertainties

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This study is concerned with the stabilization issue of nonlinear systems subject to parameter uncertainties. An interval type-2 T-S fuzzy model is used to represent the nonlinear systems subject to parameter uncertainties. An interval type-2 fuzzy static output feedback controller is designed to synthesize the interval type-2 T-S fuzzy systems. The membership-function-dependent stability conditions are derived by utilizing the information of upper and lower membership functions. The proposed stability conditions are presented in the form of linear matrix inequalities (LMIs). LMI-based stability conditions for interval type-2 fuzzy static output feedback H control synthesis are also developed. Several simulation examples are given to show the superiority of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li Y M, Tong S C, and Li T S, Composite adaptive fuzzy output feedback control design for uncertain nonlinear strict-feedback systems with input saturation, IEEE Transactions on Cybernetics, 2015, 45(10): 2299–2308.

    Article  Google Scholar 

  2. Li Y M, Tong S C, and Li T S, Hybrid fuzzy adaptive output feedback control design for uncertain MIMO nonlinear systems with time-varying delays and input saturation, IEEE Transactions on Fuzzy Systems, 2016, 24(4): 841–853.

    Article  Google Scholar 

  3. Tanaka K and Michio S, Stability analysis and design of fuzzy control systems, Fuzzy Sets and Systems, 1992, 45(2): 135–156.

    Article  MathSciNet  MATH  Google Scholar 

  4. Fang C H, Liu Y S, Kau SW, et al., A new LMI-based approach to relaxed quadratic stabilization of Takagi-Sugeno fuzzy control systems, IEEE Transactions on Fuzzy Systems, 2006, 14(3): 386–397.

    Article  Google Scholar 

  5. Xie X P, Yue D, and Peng C, Multi-instant observer design of discrete-time fuzzy systems: A ranking-based switching approach, IEEE Transactions on Fuzzy Systems, 2016, DOI: 10.1109/TFUZZ.2016.2612260.

    Google Scholar 

  6. Johansson M, Rantzer A, and Arzen K, Piecewise quadratic stability of fuzzy systems, IEEE Transactions on Fuzzy Systems, 1999, 7(6): 713–722.

    Article  Google Scholar 

  7. Feng G, Controller synthesis of fuzzy dynamical systems based on piecewise Lyapunov functions, IEEE Transactions on Fuzzy Systems, 2003, 11(5): 605–612.

    Article  Google Scholar 

  8. Wang W J, Chen Y J, and Sun C H, Relaxed stabilization criteria for discrete-time T-S fuzzy control systems based on a switching fuzzy model and piecewise Lyapunov function, IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2007, 37(3): 551–559.

    Google Scholar 

  9. Xie X P, Yang D S, and Ma H J, Observer design of discrete-time T-S fuzzy systems via multiinstant homogenous matrix polynomials, IEEE Transactions on Fuzzy Systems, 2014, 22(6): 1714–1719.

    Article  Google Scholar 

  10. Xie X P, Yue D, Zhang H G, et al., Control synthesis of discrete-time T-S fuzzy systems: Reducing the conservatism whilst alleviating the computational burden, IEEE Transactions on Cybernetics, 2016, DOI: 10.1109/TCYB.2016.2582747.

    Google Scholar 

  11. Chang X H and Yang G H, Relaxed stabilization conditions for continuous-time Takagi-Sugeno fuzzy control systems, Information Sciences, 2010, 180(17): 3273–3287.

    Article  MathSciNet  MATH  Google Scholar 

  12. Xie X P, Yue D, and Zhu X L, Further studies on control synthesis of discrete-time T-S fuzzy systems via useful matrix equalities, IEEE Transactions on Fuzzy Systems, 2014, 22(4): 1026–1031.

    Article  Google Scholar 

  13. Xie X P, Liu ZW, and Zhu X L, An efficient approach for reducing the conservatism of LMI-based stability conditions for continuous-time T-S fuzzy systems, Fuzzy Sets and Systems, 2015, 263: 71–81.

    Article  MathSciNet  MATH  Google Scholar 

  14. Xie X P, Yue D, Zhang H G, et al., Control synthesis of discrete-time T-S fuzzy systems via a multi-instant homogenous polynomial approach, IEEE Transactions on Cybernetics, 2016, 46(3): 630–640.

    Article  Google Scholar 

  15. Wu H N, An ILMI approach to robust static output feedback fuzzy control for uncertain discretetime nonlinear systems, Automatica, 2008, 44: 2333–2339.

  16. Chadli M, Maquin D, and Ragot J, Static output feedback for Takagi-Sugeno systems: An LMI approach, 10th Mediterranean Conference on Control and Automation, MED’2002, 2002: CDROM.

    Google Scholar 

  17. Huang D and Nguang S K, Robust static output feedback control of fuzzy systems: An ILMI approach, IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2006, 36(1): 216–222.

    Google Scholar 

  18. Saifia D, Chadli M, Labiod S, et al., Robust static output feedback stabilization of T-S fuzzy systems subject to actuator saturation, International Journal of Control, Automation, and Systems, 2012, 10(3): 613–622.

    Google Scholar 

  19. Chadli M and Guerra T M, LMI solution for robust static output feedback control of discrete Takagi-Sugeno fuzzy models, IEEE Transactions on Fuzzy Systems, 2012, 20(6): 1160–1165.

    Article  Google Scholar 

  20. Dong J X and Yang G H, Static output feedback control of a class of nonlinear discrete-time systems, Fuzzy Sets and Systems, 2009, 160: 2844–2859.

    Article  MathSciNet  MATH  Google Scholar 

  21. Huang D and Nguang S K, Static output feedback controller design for fuzzy systems: An ILMI approach, Information Sciences, 2007, 177: 3005–3015.

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeung E T and Lee K R, Static output feedback control for continuous-time T-S fuzzy systems: An LMI approach, International Journal of Control, Automation, and Systems, 2014, 12(3): 703–708.

    Google Scholar 

  23. Lam H K and Seneviratne L D, Stability analysis of interval type-2 fuzzy-model-based control systems, IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 2008, 38(3): 617–628.

    Google Scholar 

  24. Zhao T and Xiao J, A new interval type-2 fuzzy controller for stabilization of interval type-2 T-S fuzzy systems, Journal of the Franklin Institute, 2015, 352(4): 1627–1648.

    Article  MathSciNet  Google Scholar 

  25. Zhao T and Xiao J, State feedback control of interval type-2 T-S fuzzy systems via interval type-2 regional switching fuzzy controllers, International Journal of Systems Science, 2015, 46(15): 2756–2769.

    Article  MathSciNet  MATH  Google Scholar 

  26. Sheng L and Ma X Y, Stability analysis and controller design of IT2 fuzzy systems with time delay, International Journal of Systems Science, 2012, 43(1): 1–17.

    Article  MathSciNet  Google Scholar 

  27. Lam H K, Li H Y, Deters C, et al., Control design for interval type-2 fuzzy systems under imperfect premise matching, IEEE Transactions on Industrial Electronics, 2014, 16(2): 956–968.

    Article  Google Scholar 

  28. Li H Y, Pan Y, and Zhou Q, Filter design for interval type-2 fuzzy systems with D stability constraints under a unified frame, IEEE Transactions on Fuzzy Systems, 2015, 23(3): 719–725.

    Article  Google Scholar 

  29. Pan Y, Li H Y, and Zhou Q, Fault detection for interval type-2 fuzzy systems with sensor nonlinearities, Neurocomputing, 2014, 145(5): 488–494.

    Article  Google Scholar 

  30. Li H Y, Sun X J, Wu L G, et al., State and output feedback control of a class of fuzzy systems with mismatched membership functions, IEEE Transactions on Fuzzy Systems, 2015, 23(6): 1943–1957.

    Article  Google Scholar 

  31. Zhao T, Xiao J, Sheng H M, et al., control of continuous-time interval type-2 T-S fuzzy systems via dynamic output feedback controllers, Neurocomputing, 2015, 165: 133–143.

    Article  Google Scholar 

  32. Zhao T, Xiao J, Ding J L, et al., Relaxed stability conditions for interval type-2 fuzzy-model-based control systems, Kybernetika, 2014, 50(1): 46–65.

    MathSciNet  MATH  Google Scholar 

  33. Li H Y, Sun X J, Shi P, et al., Control design of interval type-2 fuzzy systems with actuator fault: Sampled-data control approach, Information Sciences, 2015, 302: 1–13.

    Article  MATH  Google Scholar 

  34. Zhao T, Wei Z B, Dian S Y, et al., Observer-based controller design for interval type-2 T-S fuzzy systems, Neurocomputing, 2016, 177: 9–25.

    Article  Google Scholar 

  35. Li H Y, Wu C Q, Wu L, et al., Filtering of interval type-2 fuzzy systems with intermittent measurements, IEEE Transactions on Cybernetics, 2015, 46(3): 668–678.

    Article  Google Scholar 

  36. Li H Y, Yin S, Pan Y N, et al., Model reduction for interval type-2 Takagi-Sugeno fuzzy systems, Automatica, 2015, 61: 308–314.

    Article  MathSciNet  MATH  Google Scholar 

  37. Li H Y, Wu C W, Shi P, et al., Control of nonlinear networked systems with packet dropouts: Interval type-2 fuzzy model-based approach, IEEE Transactions on Cybernetics, 2015, 45(11): 2378–2389.

    Article  Google Scholar 

  38. Zhao T, Xiao J, Han L, et al., Static output feedback control for interval type-2 T-S fuzzy systems based on fuzzy Lyapunov functions, Asian Journal of Control, 2014, 16(6): 1702–1712.

    Article  MathSciNet  MATH  Google Scholar 

  39. Chang X H, Robust output feedback H8 control and filtering for uncertain linear systems, Studies in Systems, Decision and Control, New York, Springer-Verlag, 2014.

  40. Lam H K, LMI-based stability analysis for fuzzy-model-based control systems using artificial T-S fuzzy model, IEEE Transactions on Fuzzy Systems, 2011, 19(3): 505–513.

    Article  Google Scholar 

  41. Lam H K, Polynomial fuzzy-model-based control systems: Stability analysis via piecewise-linear membership functions, IEEE Transactions on Fuzzy Systems, 2011, 19(3): 588–593.

    Article  Google Scholar 

  42. Lam H K and Lauber J, Membership-function-dependent stability analysis of fuzzy-model-based control systems using fuzzy Lyapunov functions, Information Sciences, 2013, 232: 253–266.

    Article  MathSciNet  MATH  Google Scholar 

  43. Asemani M H and Majd V J, A robust observer-based controller design for uncertain T-S fuzzy systems with unknown premise variables via LMI, Fuzzy Sets and Systems, 2013, 212: 21–40.

    Article  MathSciNet  MATH  Google Scholar 

  44. Lo J C and Lin M L, Existence of similarity transformation converting BMIs to LMIs, IEEE Transactions on Fuzzy Systems, 2007, 15(5): 840–851.

    Article  Google Scholar 

Download references

Acknowledgements

This work was mainly done while the first author was at Southwest Jiaotong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songyi Dian.

Additional information

This research was supported by the National Natural Science Foundation of China under Grant Nos. 61134001, 51477146, and the Applied Basic Research Program of Science and Technology Department of Sichuan Province, China under Grant No. 2016JY0085.

This paper was recommended for publication by Editor FENG Gang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Dian, S. Fuzzy Static Output Feedback H Control for Nonlinear Systems Subject to Parameter Uncertainties. J Syst Sci Complex 31, 343–371 (2018). https://doi.org/10.1007/s11424-017-6137-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-017-6137-1

Keywords

Navigation