[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Global stability in a competition model of plankton allelopathy with infinite delay

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A competition model of plankton allelopathy with infinite delay is considered in this paper. By using an iterative method, the global stability of the interior equilibrium point of the system is investigated. The result shows that for this system, delay and toxic substances are harmless for the stability of the interior equilibrium point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuang Y, Delay Differential Equations with Applications in Population Dynamics, Academic Press New York, 1993.

    MATH  Google Scholar 

  2. Li Z, Chen F D, and He M X, Global stability of a delay differential equations model of plankton allelopathy, Appl. Math. Comput., 2012, 218(13): 7155–7163.

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen F D, Li Z, Chen X X and Laitochová J, Dynamic behaviors of a delay differential equation model of plankton allelopathy, J. Comput. Appl. Math., 2007, 206(2): 733–754.

    Article  MathSciNet  MATH  Google Scholar 

  4. Solé J, Garca-Ladona E, Ruardij P, and Estrada M, Modelling allelopathy among marine algae, Ecol. Model., 2005, 183: 373–384.

    Article  Google Scholar 

  5. Huo H F and Li W T, Permanence and global stability for nonautonomous discrete model of plankton allelopathy, Appl. Math. Lett., 2004, 17: 1007–1013.

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu Z J and Chen L S, Positive periodic solution of a general discrete non-autonomous difference system of plankton allelopathy with delays, J. Comput. Appl. Math., 2006, 197(2): 446–456.

    Article  MathSciNet  MATH  Google Scholar 

  7. Chattopadhyay J, Effect of toxic substances on a two-species competitive system, Ecol. Model., 1996, 84: 287–289.

    Article  Google Scholar 

  8. Mukhopadhyay A, Chattopadhyay J, and Tapaswi P K, A delay differential equations model of plankton allelopathy, Math. Biosci., 1998, 149: 167–189.

    Article  MathSciNet  MATH  Google Scholar 

  9. Bandyopadhyay M, Dynamical analysis of an allelopathic phytoplankton model, J. Biol. Syst., 2006, 14(2): 205–217.

    Article  MATH  Google Scholar 

  10. Smith M, Models in Ecology, Cambridge University Press Cambridge, 1974.

    MATH  Google Scholar 

  11. Kar T K and Chaudhuri K S, On non-selective harvesting of two competing fish species in the presence of toxicity, Ecol. Model., 2003, 161: 125–137.

    Article  Google Scholar 

  12. Samanta G P, A two-species competitive system under the influence of toxic substances, Appl. Math. Comput., 2010, 216(1): 291–299.

    Article  MathSciNet  MATH  Google Scholar 

  13. Dubey B and Hussain J, A model for the allelopathic effect on two competing species, Ecol. Model., 2000, 129(2–3): 195–207.

    Article  Google Scholar 

  14. Li Z and Chen F D, Extinction in two dimensional nonautonomous Lotka-Volterra systems with the effect of toxic substances, Appl. Math. Comput., 2006, 182: 684–690.

    Article  MathSciNet  MATH  Google Scholar 

  15. Li Z and Chen F D, Extinction in periodic competitive stage-structured Lotka-Volterra model with the effects of toxic substances, J. Comput. Appl. Math., 2009, 231: 143–153.

    Article  MathSciNet  MATH  Google Scholar 

  16. Abbas S, Banerjee M, and Hungerbuhler N, Existence, uniqueness and stability analysis of allelopathic stimulatory phytoplankton model, J. Math. Anal. Appl., 2010, 367(1): 249–259.

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhen J and Ma Z, Periodic solutions for delay differential equations model of plankton allelopathy, Comput. Math. Appl., 2002, 44(3–4): 491–500.

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen F D and Shi C L, Global attractivity in an almost periodic multi-species nonlinear ecological model, Appl. Math. Comput., 2006, 180(1): 376–392.

    Article  MathSciNet  MATH  Google Scholar 

  19. Tian C R, Zhang L, and Ling Z, The stability of a diffusion model of plankton allelopathy with spatio-temporal delays, Nonlinear Anal. Real World Appl., 2009, 10: 2036–2046.

    Article  MathSciNet  MATH  Google Scholar 

  20. Tian C R and Lin Z G, Asymptotic behavior of solutions of a periodic diffusion system of plankton allelopathy, Nonlinear Anal. Real World Appl., 2010, 11: 1581–1588.

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen F D, Permanence in nonautonomous multi-species predator-prey system with feedback, Appl. Math. Comput., 2006, 173(2): 694–709.

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen F D, On a periodic multi-species ecological model, Appl. Math. Comput., 2005, 171(1): 492–510.

    Article  MathSciNet  MATH  Google Scholar 

  23. Chen F D, On a nonlinear non-autonomous predator-prey model with diffusion and distributed delay, J. Comput. Appl. Math., 2005, 180(1): 33–49.

    Article  MathSciNet  MATH  Google Scholar 

  24. Montes De Oca F and Vivas M, Extinction in two dimensional Lotka-Volterra system with infinite delay, Nonlinear Anal.: Real World Appl., 2006, 7(5): 1042–1047.

    Article  MathSciNet  MATH  Google Scholar 

  25. Chen F D, Li Z, and Huang Y, Note on the permanence of a competitive system with infinite delay and feedback controls, Nonlinear Anal.: Real World Appl., 2007, 8: 680–687.

    Article  MathSciNet  MATH  Google Scholar 

  26. Chen F D, Li Z, and Xie X D, Permanence of a nonlinear integro-differential prey-competition model with infinite delays, Commun. Nonlinear Sci. Numer. Simul., 2008, 13(10): 2290–2297.

    Article  MathSciNet  MATH  Google Scholar 

  27. Chen F D and You M S, Permanence for an integrodifferential model of mutualism, Appl. Math. Comput., 2007, 186(1): 30–34.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengde Chen.

Additional information

This research was supported by the Natural Science Foundation of Fujian Province under Grant Nos. 2015J01012 and 2015J01019.

This paper was recommended for publication by Editor FENG Dexing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Xie, X. & Wang, H. Global stability in a competition model of plankton allelopathy with infinite delay. J Syst Sci Complex 28, 1070–1079 (2015). https://doi.org/10.1007/s11424-015-3125-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-015-3125-1

Keywords

Navigation