[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Adaptive stabilization for a class of feedforward systems with zero-dynamics

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper investigates adaptive state feedback stabilization for a class of feedforward nonlinear systems with zero-dynamics, unknown linear growth rate and control coefficient. For design convenience, the state transformation is first introduced and the new system is obtained. Then, the estimation law is constructed for the unknown control coefficient, and the state feedback controller is proposed with a gain updated on-line. By appropriate choice of the estimation law for the control coefficient and the dynamic gain, the states of the closed-loop system are globally bounded, and the state of the original system converges to zero. Finally, a simulation example is given to illustrate the correctness of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mazenc F and Bowong S, Tracking trajectories of feedforward systems, IEEE Trans. Automatic Control, 2002, 47(8): 1338–1342.

    Article  MathSciNet  Google Scholar 

  2. Ye X D and Unbehauen H, Global adaptive stabilization for a class of feedforward nonlinear systems, IEEE Trans. Automatic Control, 2004, 49(5): 786–792.

    Article  MathSciNet  Google Scholar 

  3. Krstic M, Feedback linearizability and explicit integrator forwarding controllers for classes of feedforward systems, IEEE Trans. Automatic Control, 2004, 49(10): 1668–1682.

    Article  MathSciNet  Google Scholar 

  4. Mazenc F, Mondie S, and Francisco R, Global asymptotic stabilization of feedforward systems with delay in the input, IEEE Trans. Automatic Control, 2004, 49(5): 844–850.

    Article  MathSciNet  Google Scholar 

  5. Teel A R, Using saturation to stabilize a class of single-input partially linear composite systems, Proceedings of the 2nd IFAC Symposium on Nonlinear Control Systems, Bordeaux, France, 1992, 379–384.

    Google Scholar 

  6. Krishnamurthy P and Khorrami F, Adaptive output-feedback control of a general class of uncertain feedforward systems via a dynamic scaling approach, IET Control Theory A, 2011, 5(5): 681–692.

    Article  MathSciNet  Google Scholar 

  7. Ye X D, Universal stabilization of feedforward nonlinear systems, Automatica, 2003, 39(1): 141–147.

    Article  MATH  MathSciNet  Google Scholar 

  8. Krishnamurthy P and Khorrami F, Adaptive output-feedback control of feedforward systems with uncertain parameters coupled with all states, Proceedings of the 2007 American Control Conference, New York, USA, 2007, 480–485.

    Chapter  Google Scholar 

  9. Choi H L and Lim J T, Stabilization of nonlinear systems with unknown growth rate by adaptive output feedback, Int. J. Syst. Sci., 2010, 41(6): 673–678.

    Article  MATH  MathSciNet  Google Scholar 

  10. Mazenc F and Praly L, Adding integrations, saturated controls, and stabilization for feedforward systems, IEEE Trans. Automatic Control, 1996, 41(11): 1559–1578.

    Article  MATH  MathSciNet  Google Scholar 

  11. Sepulchre R, Jankovic M, and Kokotovic P V, Integrator forwarding: A new recursive nonlinear robust design, Automatica, 1997, 33(5): 979–984.

    Article  MATH  MathSciNet  Google Scholar 

  12. Lin W and Li X, Synthesis of upper-triangular nonlinear systems with marginally unstable free dynamics using state-dependent saturation, Int. J. Control, 1999, 72(12): 1078–1086.

    Article  MATH  Google Scholar 

  13. Arcak M, Teel A, and Kokotovic P, Robust nonlinear control of feedforward systems with unmodeled dynamics, Automatica, 2001, 37(2): 265–272.

    Article  MATH  MathSciNet  Google Scholar 

  14. Marconi L, Isidori A, and Serrani A, Input disturbance suppression for a class of feedforward uncertain nonlinear systems, Syst. Control Lett., 2002, 45(3): 227–236.

    Article  MATH  MathSciNet  Google Scholar 

  15. Polendo J and Schrader C B, Output feedback stabilization of nonlinear feedforward systems using arbitrarily bounded control, Proceedings of the 2005 American Control Conference, Portland, OR, USA, 2005, 4727–4729.

    Google Scholar 

  16. Chen T S and Huang J, Disturbance attenuation of feedforward systems with dynamic uncertainty, IEEE Trans. Automatic Control, 2008, 53(7): 1711–1717.

    Article  Google Scholar 

  17. Chen T S and Huang J, Global robust output regulation by state feedback for strict feedforward systems, IEEE Trans. Automatic Control, 2009, 54(9): 2157–2163.

    Article  Google Scholar 

  18. Ding S H, Qian C J, and Li S H, Global stabilization of a class of feedforward systems with lower-order nonlinearities, IEEE Trans. Automatic Control, 2010, 55(3): 691–696.

    Article  MathSciNet  Google Scholar 

  19. Ye X D, Adaptive stabilization of time-delay feedforward nonlinear systems, Automatica, 2011, 47(5): 950–955.

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang X F, Baron L, Liu Q R, and Boukas E K, Design of stabilizing controllers with a dynamic gain for feedforward nonlinear time-delay systems, IEEE Trans. Automatic Control, 2011, 56(3): 692–697.

    Article  MathSciNet  Google Scholar 

  21. Shang F, Liu Y G, and Zhang X F, Adaptive stabilizing controller design for a class of uncertain feedforward nonlinear systems, Proceedings of the 31st Chinese Control Conference, Hefei, China, 2012, 519–523.

    Google Scholar 

  22. Praly L and Jiang Z P, Linear output feedback with dynamic high gain for nonlinear systems, Syst. Control Lett., 2004, 53(2): 107–116.

    Article  MATH  MathSciNet  Google Scholar 

  23. Krishnamurthy P and Khorrami F, On uniform solvability of parameter-dependent Lyapunov inequalities and applications to various problems, SIAM J. Control Optim., 2006, 45(4): 1147–1164.

    Article  MATH  MathSciNet  Google Scholar 

  24. Krishnamurthy P and Khorrami F, Feedforward systems with ISS appended dynamics: Adaptive output-feedback stabilization and disturbance attenuation, IEEE Trans. Automatic Control, 2008, 53(1): 405–412.

    Article  MathSciNet  Google Scholar 

  25. Khalil H K, Nonlinear Systems, 3rd Edition, Prentice Hall, New Jersey, 2002.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Shang.

Additional information

This research was supported by the National Natural Science Foundations of China under Grant Nos. 61104069, 61325016, 61273084, 61374187 and 61473176, and Independent Innovation Foundation of Shandong University under Grant No. 2012JC014.

This paper was recommended for publication by Editor ZHANG Jifeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, F., Liu, Y. & Zhang, G. Adaptive stabilization for a class of feedforward systems with zero-dynamics. J Syst Sci Complex 28, 305–315 (2015). https://doi.org/10.1007/s11424-015-3059-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-015-3059-7

Keywords

Navigation