[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Complete monotonicity of the probability of ruin and de Finetti’s dividend problem

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

This paper studies the complete monotonicity of the probability of ruin ψ in the the classical risk model and the classical risk model that is perturbed by a diffusion. As a byproduct, the authors give an alternative proof to a result on the optimal dividend problem due to Loeffen (2008).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Loeffen, On optimality of the barrier strategy in de Finetti’s dividend problem for spectrally negative Lévy processes, The Annals of Applied Probability, 2008, 18(5): 1669–1680.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Asmussen, Ruin Probabilities, World Scientific, Singapore, 2000.

    Book  Google Scholar 

  3. T. Rolski, H. Schmidli, V. Schmidt and J. Teugels, Stochastic Processes for Insurance and Finance, New York, Wiley, 1999.

    Book  MATH  Google Scholar 

  4. G. E. Willmot and X. S. Lin, Lundberg Approximations for Compound Distributions with Insurance Applications, New York, Springer, 2001.

    Book  Google Scholar 

  5. M. Brown, Further monotonicity properties for specialized renewal processes, The Annals of Probability, 1981, 9: 891–895.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Applebaum, Lévy Processes and Stochastic Calculus, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  7. M. Bagnoli and T. Bergstrom, Log-concave probability and its applications, Economic Theory, 2005, 26: 445–469.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1941.

    Google Scholar 

  9. J. Keilson, Exponential spectra as a tool for the study of serves systems with several classes of customers, Journal of Applied Probability, 1978, 15: 162–170.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Szekli, On the concavity of the waiting time distribution in some GI/G/1 queues, Journal of Applied Probability, 1986, 23: 555–561.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. G. Shanthikumar, DFR properties of first-passage times and its preservation under geometric compounding, The Annals of Probability, 1988, 33: 397–406.

    Article  MathSciNet  Google Scholar 

  12. F. Dufresne and H. U. Gerber, Risk theory for the compound Poission process that is perturbed by diffusion, Insurance: Mathematics and Economics, 1991, 10: 51–59.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Gripenberg, On positive, nonincreasing resolvents of Volterra equations, Journal Differential Equations, 1978, 30: 380–390.

    Article  MathSciNet  MATH  Google Scholar 

  14. F. Avram, Z. Palmowski and M. R. Pistorius, On the optimal dividend problem for a spectrally negative Lévy process, The Annals of Applied Probability, 2007, 17: 156–180.

    Article  MathSciNet  MATH  Google Scholar 

  15. H. U. Gerber and E. S. W. Shiu, On the time value of ruin, North American Actuarial Journal, 1998, 2(1): 48–78.

    MathSciNet  MATH  Google Scholar 

  16. H. U. Gerber and E. S. W. Shiu, Optimal dividends: analysis with Brownian motion, North American Actuarial Journal, 2004, 8: 1–20.

    MathSciNet  MATH  Google Scholar 

  17. H. U. Gerber, X. S. Lin and H. Yang, A note on the dividends-penalty identity and the optimal dividend barrier, Astin Bulletin, 2006, 36: 489–503.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. M. Li, The distribution of the dividend payments in the compound Poission risk model perturbed by diffusion, Scandinavian Actuarial Journal, 2006, (2): 73–85.

  19. H. U. Gerber, Entscheidungskriterien für den zusammengesetzten Poisson-Prozess, Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker, 1969, 69: 185–227.

    Google Scholar 

  20. H. Albrecher and S. Thonhauser, Optimal dividend strategies for a risk process under force of interest, Insurance: Mathematics and Economics, 2008, 43: 134–149.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. U. Gerber, Games of economic survival with discrete-and continuous income processes, Operations Research, 1972, 20: 37–45.

    Article  MATH  Google Scholar 

  22. B. Chan, H. U. Gerber and E. S. W. Shiu, Discussion of “on a classical risk model with a constant dividend barrier”, North American Actuarial Journal, 2006, 10(2): 133–139.

    MathSciNet  Google Scholar 

  23. H. U. Gerber, E. S. W. Shiu and N. Smith, Methods for estimating the optimal dividend barrier and the probability of ruin, Insurance: Mathematics and Economics, 2008, 42: 243–254.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuancun Yin.

Additional information

This paper was supported by the National Natural Science Foundation of China under Grant No. 11171179 and the Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20093705110002.

This paper was recommended for publication by Editor Guohua ZOU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, H., Yin, C. Complete monotonicity of the probability of ruin and de Finetti’s dividend problem. J Syst Sci Complex 25, 178–185 (2012). https://doi.org/10.1007/s11424-012-9042-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-012-9042-7

Key words

Navigation