[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Model checking for general linear error-in-covariables model with validation data

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper, model checking problem is considered for general linear model when covariables are measured with error and an independent validation data set is available. Without assuming any error model structure between the true variable and the surrogate variable, the author first apply nonparametric method to model the relationship between the true variable and the surrogate variable with the help of the validation sample. Then the author construct a score-type test statistic through model adjustment. The large sample behaviors of the score-type test statistic are investigated. It is shown that the test is consistent and can detect the alternative hypothesis close to the null hypothesis at the rate n −r with 0 ≤ r ≤ 1/2. Simulation results indicate that the proposed method works well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Cheng and J. W. Van Ness, Statistical Regression with Measurement Error, Oxford University Press, London, 1998.

    Google Scholar 

  2. C. L. Cheng and H. Schneeweiss, Polynomial regression with errors in the variables, Journal of the Royal Statistical Society B, 1998, 60: 189–199.

    Article  MATH  MathSciNet  Google Scholar 

  3. C. L. Cheng and A. Kukush, A goodness-of-fit test for a polynomial errors-in-variables model, Ukrainian Math. J., 2004, 56: 527–543.

    Article  MATH  MathSciNet  Google Scholar 

  4. L. X. Zhu, W. X. Song, and H. J. Cui, Testing lack-of-fit for a polynomial errors-in-variables model, Acta Math, Appl. Sinica, 2004, 19: 353–362.

    MathSciNet  Google Scholar 

  5. W. Härdle and E. Mammen, Testing parametric versus nonparametric regression, Annals of Statistics, 1993, 21: 1926–1947.

    Article  MATH  MathSciNet  Google Scholar 

  6. W. Stute, G. W. Manteiga, and M. P. Quindimil, Bootstrap approximations in model checks for regression, Journal of the American Statistical Association, 1998, 93: 141–149.

    Article  MATH  MathSciNet  Google Scholar 

  7. G. W. Manteiga and P. A. González, Goodness-of-fit tests for linear regression models with missing response data, The Canadian Journal of Statistics, 2006, 34: 149–170.

    Article  MATH  Google Scholar 

  8. L. X. Zhu and H. J. Cui, Testing lack-of-fit for general linear errors in variables models, Statistica Sinica., 2005, 15: 1049–1068.

    MATH  MathSciNet  Google Scholar 

  9. K. Liu, J. Stamler, A. Dyer, J. McKeever, and P. McKeever, Statistical methods to assess and minimize the role of intra-individual variability in obscuring the relationship between dietary lipids and serum cholesterol, J. Chronic. Dis., 1978, 31: 399–418.

    Article  Google Scholar 

  10. J. L. Freudenheim and J. R. Marshall, The problem of profound mismeasurement and the power of epidemiological studies of diet and cancer, Nutr Cancer., 1988, 11: 243–250.

    Article  Google Scholar 

  11. R. J. Carroll, D. Ruppert, and L. W. Stefanski, Measurement Error in Nonlinear Models, Chapman and Hall, New York, 1995.

    MATH  Google Scholar 

  12. H. Liang, et al., Estimation in a semiparametric partially linear errors-in-variables model, Annals of Statistics., 1999, 27: 1519–1535.

    Article  MATH  MathSciNet  Google Scholar 

  13. X. Lin and R. J. Carroll, Nonparametric function estimation for clustered data when the predictor is measured without/with error, Journal of the American Statistical Association, 2000, 95: 520–534.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. J. Carroll and M. P. Wand, Semiparametric estimation in logistic measure error models, J. Roy. Statist. Soc. B, 1991, 53: 573–585.

    MATH  MathSciNet  Google Scholar 

  15. M. S. Pepe, Inference using surrogate outcome data and a validation sample, Biometrika, 1992, 79: 355–365.

    Article  MATH  MathSciNet  Google Scholar 

  16. J. Wittes, E. Lakatos, and J. Probstfield, Surrogate endpoints in clinical trials: Cardiovascular diseases, Statistics in Medicine, 1989, 8: 415–425.

    Article  Google Scholar 

  17. Q. H. Wang and J. N. K. Rao, Empirical likelihood-based in linear errors-in-covariables models with validation data, Biometrika, 2002, 89: 345–358.

    Article  MATH  MathSciNet  Google Scholar 

  18. Q. Wang and K. Yu, Likelihood-based kernel estimation in semiparametric errors-in-covariables models with validation data, Journal of Multivariate Analysis, 2007, 98: 455–480.

    Article  MATH  MathSciNet  Google Scholar 

  19. C. Y. Wang, Flexible regression calibration for covariate measurement error with longitudinal surrogate variables, Statistica Sinica., 2000, 10: 905–921.

    MATH  MathSciNet  Google Scholar 

  20. J. Fan and L. Huang, Goodness-of-Fit tests for parametric regression models, Journal of the American Statistical Association, 2001, 96: 640–652.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. X. Zhu and K. W. Ng, Checking the adequacy of a partial linear model, Statistica Sinica., 2003, 13: 763–781.

    MATH  MathSciNet  Google Scholar 

  22. D. Y. Lin, L. J. Wei, and Z. Ying, Model-checking techniques based on cumulative residuals, Biometrics, 2002, 58: 1–12.

    Article  MathSciNet  Google Scholar 

  23. Z. Pan and D. Y. Lin, Goodness-of-fit methods for generalized linear mixed models, Biometrics, 2005, 61: 1000–1009.

    Article  MATH  MathSciNet  Google Scholar 

  24. G. Dikta, M. Kvesic, and C. Schmidt, Bootstrap approximations in model checks for binary data, Journal of the American Statistical Association, 2006, 101: 521–530.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Sun.

Additional information

This research is supported by the National Natural Science Foundation of China (10901162, 10926073), the President Fund of GUCAS and China Postdoctoral Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dai, P., Sun, Z. & Wang, P. Model checking for general linear error-in-covariables model with validation data. J Syst Sci Complex 23, 1153–1166 (2010). https://doi.org/10.1007/s11424-010-8051-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-010-8051-7

Key words

Navigation