[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Necessary and Sufficient Condition for Global Controllability of a Class of Affine Nonlinear Systems

  • Published:
Journal of Systems Science and Complexity Aims and scope Submit manuscript

Abstract

In this paper, we investigate the global controllability of a class of n-dimensional affine nonlinear systems with n – 1 controls and constant control matrix. A necessary and sufficient condition for its global controllability has been obtained by using the methods recently developed. Furthermore, we generalize the above result to a class of affine nonlinear systems with a block-triangular-like structure. Finally, we will give three examples to show the applications of our results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Isidori, Nonlinear Control Systems, third ed. Springer-Verlag, London, 1995.

    Google Scholar 

  2. J. L. Casti, Nonlinear System Theory, Academic Press, Inc. Ltd., Orlando, 1985.

    Google Scholar 

  3. H. Nijmeijer and A. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag, New York, 1990.

    Google Scholar 

  4. E. D. Sontag, Mathematical Control Theory—Deterministic Finite Dimensional Systems, Springer-Verlag, New York, 1998.

    Google Scholar 

  5. V. Jurdjevic, Geometric Control Theory, Cambridge University Press, New York, 1997.

    Google Scholar 

  6. G. W. Haynes and H. Hermes, Nonlinear controllability via lie theory, SIAM J. Control, 1970, 8(4): 450–460.

    Article  Google Scholar 

  7. H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J. Diff. Eqns. 1972, 12(1): 95–116.

    Article  Google Scholar 

  8. Y. M. Sun, Necessary and sufficient condition for global controllability of planar affine nonlinear systems, IEEE Trans. Automat. Contr., 2007, 52(8): 1454–1460.

    Article  Google Scholar 

  9. Y. M. Sun and L. Guo, On global controllability of planar affine nonlinear systems, Proceedings of the 24th Chinese Control Conference, South China University of Technology Press, 2005, 1765–1769.

  10. L. R. Hunt, Global controllability of nonlinear systems in two dimensions, Math. Systems Theory, 1980, 13: 361–376.

    Article  Google Scholar 

  11. D. Aeyels, Local and global controllability for nonlinear systems, Systems & Control Letters, 1984, 5(1): 19–26.

    Article  Google Scholar 

  12. C. Y. Kaya and J. L. Noakes, Closed trajectories and global controllability in the plane, IMA Journal of Mathematical Control & Information, 1997, 14(4): 353–369.

    Article  Google Scholar 

  13. P. E. Caines and E. S. Lemch, On the global controllability of nonlinear systems: fountains, recurrence, and applications to hamiltonian systems, SIAM J. Cotrol Optim., 2003, 41(5): 1532–1553.

    Article  Google Scholar 

  14. L. R. Hunt, n-Dimensional controllability with (n − 1) controls, IEEE Trans. Automat. Contr., 1982, 27(1): 113–117.

    Article  Google Scholar 

  15. S. Nikitin, Global Controllability and Stabilization of Nonlinear Systems,World Scientific Publishing Co. Pte. Ltd, Singapore, 1994.

    Google Scholar 

  16. D. Cheng, Controllability of Switched Affine Systems, Proceedings of the 24th Chinese Control Conference, South China University of Technology Press, 2005, 1770–1775.

  17. Y. M. Sun, S. W. Mei, and Q. Lu, On Global Controllability of Affine Nonlinear Systems with a Triangular-like Structure, Science in China (Series. F, Information Science), 2007, 50(6): 831–845.

    Google Scholar 

  18. F. Bullo and A. D. Lewis, Geometric Control of Mechanical Systems, Modeling, Analysis, and Design for Simple Mechenical Control Systems (Texts In Applied Methematics), Springer, New York, 2005.

    Google Scholar 

  19. Y. Guo, Z. Xi, and D. Cheng, Speed rugulation of permanent magnet synchrorous motor via feedback dissipative hamiltonian realization, Control Theory & Applications, IET, 2007, 1(1): 281–290.

    Article  Google Scholar 

  20. M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, Inc, New York, 1995.

    Google Scholar 

  21. P. Hartman, Ordinary Differential Equations, Second ed. Birkhäuser, Boston, 1982, 25–27.

    Google Scholar 

  22. H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., 1934, 34(1): 63–89.

    Article  Google Scholar 

  23. V. I. Arnold, Ordinary Differential Equations (Translated and edited by R. A. Silverman), MIT Press, Cambridge, 1973.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yimin Sun.

Additional information

The research was supported by the National Natural Science Foundation of China under Grant No. 50525721, 60221301, and 60334040, and China Postdoctoral Science Foundation under Grant No. 20060390470.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Mei, S. & Lu, Q. Necessary and Sufficient Condition for Global Controllability of a Class of Affine Nonlinear Systems. Jrl Syst Sci & Complex 20, 492–500 (2007). https://doi.org/10.1007/s11424-007-9046-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11424-007-9046-x

Keywords

Navigation