[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Infrastructure-Free Floor Localization Through Crowdsourcing

  • Regular Paper
  • Published:
Journal of Computer Science and Technology Aims and scope Submit manuscript

Abstract

Mobile phone localization plays a key role in the fast-growing location-based applications domain. Most of the existing localization schemes rely on infrastructure support such as GSM, Wi-Fi or GPS. In this paper, we present FTrack, a novel floor localization system to identify the floor level in a multi-floor building on which a mobile user is located. FTrack uses the mobile phone’s sensors only without any infrastructure support. It does not require any prior knowledge of the building such as floor height or floor levels. Through crowdsourcing, FTrack builds a mapping table which contains the magnetic field signature of users taking the elevator/escalator or walking on the stairs between any two floors. The table can then be used for mobile users to pinpoint their current floor levels. We conduct both simulation and field studies to demonstrate the efficiency, scalability and robustness of FTrack. Our field trial shows that FTrack achieves an accuracy of over 96% in three different buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bruner II G, Kumar A. Attitude toward location-based advertising. Journal of Interactive Advertising, 2007, 7(2): 3–15.

    Article  Google Scholar 

  2. Aalto L, G¨othlin N, Korhonen J, Ojala T. Bluetooth and WAP push based location-aware mobile advertising system. In Proc. the 2nd International Conference on Mobile Systems, Applications, and Services, June 2004, pp. 49–58.

  3. Mohan P, Padmanabhan V, Ramjee R. Nericell: Rich monitoring of road and traffic conditions using mobile smartphones. In Proc. the 6th ACM Conference on Embedded Network Sensor Systems, November 2008, pp. 323–336.

  4. Thiagarajan A, Ravindranath L, LaCurts K, Madden S, Balakrishnan H, Toledo S, Eriksson J. Vtrack: Accurate, energy-aware road traffic delay estimation using mobile phones. In Proc. the 7th ACM Conference on Embedded Networked Sensor Systems, November 2009, pp. 85–98.

  5. LaMarca A, Chawathe Y, Consolvo S et al. Place Lab: Device positioning using radio beacons in the wild. In Proc. the 3rd International Conference on Pervasive Computing, May 2005, pp. 116–133.

  6. Bahl P, Padmanabhan V. RADAR: An inbuilding RF-based user location and tracking system. In Proc. the 19th International Conference on Computer Communications, March 2000, pp. 775–784.

  7. Jiang Y, Pan X, Li K, Lv Q, Dick R P, Hannigan M, Shang L. ARIEL: Automatic Wi-Fi based room fingerprinting for indoor localization. In Proc. the 2012 ACM Conference on Ubiquitous Computing, September 2012, pp. 441–450.

  8. Yang Z, Wu C, Liu Y. Locating in fingerprint space: Wireless indoor localization with little human intervention. In Proc. the 18th Annual International Conference on Mobile Computing and Networking, August 2012, pp. 269–280.

  9. Constandache I, Bao X, Azizyan M, Choudhury R. Did you see Bob?: Human localization using mobile phones. In Proc. the 16th Annual International Conference on Mobile Computing and Networking, September 2010, pp. 149–160.

  10. Constandache I, Choudhury R, Rhee I. Towards mobile phone localization without war-driving. In Proc. the 29th International Conference on Computer Communications, March 2010, pp. 2321–2329.

  11. Ofstad A, Nicholas E, Szcodronski R, Choudhury R. AAMPL: Accelerometer augmented mobile phone localization. In Proc. the 1st ACM International Workshop on Mobile Entity Localization and Tracking in GPS-Less Environments, September 2008, pp. 13–18.

  12. Jekeli C. Inertial Navigation Systems with Geodetic Applications. Walter de Gruyter, 2001.

  13. Alzantot M, Youssef M. CrowdInside: Automatic construction of indoor floorplans. In Proc. the 20th International Conference on Advances in Geographic Information Systems, November 2012, pp. 99–108.

  14. Wang H, Sen S, Elgohary A, Farid M, Youssef M, Choudhury R R. No need to war-drive: Unsupervised indoor localization. In Proc. the 10th International Conference on Mobile Systems, Applications, and Services, June 2012, pp. 197–210.

  15. Xie H, Gu T, Tao X, Lu J. MaLoc: A practical magnetic fingerprinting approach to indoor localization using smartphones. In Proc. ACM International Conference on Ubiquitous Computing, September 2014, pp. 243–253.

  16. Chung J, Donahoe M, Schmandt C, Kim I J, Razavai P, Wiseman M. Indoor location sensing using geo-magnetism. In Proc. the 9th International Conference on Mobile Systems, Applications, and Services, June 28-July 1, 2011, pp. 141–154.

  17. Haverinen J, Kemppainen A. Global indoor self-localization based on the ambient magnetic field. Robotics and Autonomous Systems, 2009, 57(10): 1028–1035.

    Article  Google Scholar 

  18. Muralidharan K, Khan A J, Misra A, Balan R K, Agarwal S. Barometric phone sensors-more hype than hope! In Proc. the 15th International Workshop on Mobile Computing Systems and Applications, February 2014, pp. 12:1–12:6.

  19. Wang H, Lenz H, Szabo A, Hanebeck V D, Bamberger J. Fusion of barometric sensors, WLAN signals and building information for 3-D indoor/campus localization. In Proc. the International Conference on Multisensor Fusion and Integration for Intelligent Systems, September 2006.

  20. Bendt D J, Clifford J. Using dynamic time warping to find patterns in time series. In Proc. Advances in Knowledge Discovery in Databases: Papers from the 1994 AAAI Workshop, July 1994, pp. 359–370.

  21. Erd¨os P, R´enyi A. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci., 1960, 5: 17–61.

  22. Liu J, Zhong L, Wickramasuriya J, Vasudevan V. uWave: Accelerometer-based personalized gesture recognition and its applications. Pervasive and Mobile Computing, 2009, 5(6): 657–675.

    Article  Google Scholar 

  23. Lord S, Rochester L, Weatherall M, McPherson K, Mc- Naughton H. The effect of environment and task on gait parameters after stroke: A randomized comparison of measurement conditions. Archives of Physical Medicine and Rehabilitation, 2006, 87(7): 967–973.

    Article  Google Scholar 

  24. Varshavsky A, LaMarca A, Hightower J, de Lara E. The SkyLoc floor localization system. In Proc. the 5th IEEE Int. Conf. Pervasive Computing and Communication, March 2007, pp. 125–134.

  25. Montemerlo M, Thrun S, Koller D,Wegbreit B. FastSLAM: A factored solution to the simultaneous localization and mapping problem. In Proc. the 18th AAAI National Conference on Artificial Intelligence, July 28-August 1, 2002, pp. 593–598.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Bo Ye.

Additional information

This work was supported by the National High Technology Research and Development 863 Program of China under Grant No. 2013AA01A213 and the National Natural Science Foundation of China under Grant Nos. 91318301, 61373011 and 61321491.

A preliminary version of the paper was published in the Proceedings of PerCom 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, HB., Gu, T., Tao, XP. et al. Infrastructure-Free Floor Localization Through Crowdsourcing. J. Comput. Sci. Technol. 30, 1249–1273 (2015). https://doi.org/10.1007/s11390-015-1597-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11390-015-1597-z

Keywords

Navigation