[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Towards long-distance inspection for in-pipe robots in water distribution systems with smart motion facilitated by particle filter and multi-phase motion controller

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

Incidents in water distribution systems cause water loss and water contamination that requires the utility managers to assess the condition of pipelines frequently. However, pipelines are long and access to all parts of it is a challenging task; current in-pipe robots have the limitation of short-distance inspection and inability to operate in-service networks. In this work, we improve the design of our previously developed in-pipe robot as reported by Kazeminasab et al. (IEEE 5th international conference on robotics and automation engineering (ICRAE), 2020) and a multi-phase motion controller is proposed that ensures reliable motion for the robot during operation. The controller provides stabilized configuration with zero velocity at junctions (i.e. phase 1), stabilized configuration with velocity tracking at straight paths (i.e. phase 2), and facilitates desired amount of rotation around two axes for the robot (i.e. phase 3). We propose a localization technique with a particle filter that receives information about the surrounding environment with a rangefinder sensor. The map of the operation that is needed for the particle filter is an array that comprises non-straight paths in the operation that the robot passes through. We also develop a method that facilitates smart navigation for the robot in different configurations of pipelines. In this method, the localizer (i.e. particle filter) is synchronized with the multi-phase motion controller, and the robot switches between different phases of the controller based on its location in the network. We validated the functionality of the controller in the three phases with simulations and also the localization and navigation methods with experimental results. The results show that the robot has smart navigation with the synchronized motion controller and the localizer inside pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Kazeminasab S, Aghashahi M, Banks MK (2020) Development of an Inline Robot for Water Quality Monitoring. In: IEEE 2020 5th international conference on robotics and automation engineering (ICRAE), 106–113. https://doi.org/10.1109/ICRAE50850.2020.9310805

  2. Infrastructure Report Card (2017). https://www.infrastructurereportcard.org/wp-content/uploads/2017/01/Drinking-Water-Final.pdf, Accessed Mar 5 2021

  3. Vickers AL (1999) The future of water conservation: challenges ahead. J Contemp Water Res Educ 114:8

    Google Scholar 

  4. Canada E. Threats to water availability in Canada 2004

  5. Chatzigeorgiou D, Youcef-Toumi K, Ben-Mansour R (2014) Design of a novel in-pipe reliable leak detector. IEEE/ASME Trans Mechatron 20:824–833. https://doi.org/10.1109/TMECH.2014.2308145

    Article  Google Scholar 

  6. The Standardized Monitoring Framework: A Quick Reference Guide | Drinking Water Requirements for States and Public Water Systems | US EPA n.d. https://www.epa.gov/dwreginfo/standardized-monitoring-framework-quick-reference-guide, Accessed Mar 5 2021

  7. Fletcher R, Chandrasekaran M (2008) SmartBall: a new approach in pipeline leak detection. Int Pipeline Conf 48586:117–133. https://doi.org/10.1115/IPC2008-64065

    Article  Google Scholar 

  8. Li Y, Liu S, Dorantes-Gonzalez DJ, Zhou C, Zhu H (2014) A novel above-ground marking approach based on the girth weld impact sound for pipeline defect inspection. Insight-Non-Destructive Test Cond Monit 56:677–682. https://doi.org/10.1784/insi.2014.56.12.677

    Article  Google Scholar 

  9. “SmartBall ® Inspection Report of North Beach Force Main,” 2011. [Online]. Available: https://your.kingcounty.gov/dnrp/library/wastewater/wtd/construction/NorthBeachFM/1108_NorthBeachForceMainInspectionReport.pdf, Accessed Mar 05 2021

  10. Horodinca M, Doroftei I, Mignon E, Preumont A, (2002) A simple architecture for in-pipe inspection robots. In: Proc Int Colloq Mobile, Autonomous Systems, 61: 64

  11. Roh S, Choi HR (2005) Differential-drive in-pipe robot for moving inside urban gas pipelines. IEEE Trans Robot 21:1–17. https://doi.org/10.1109/TRO.2004.838000

    Article  Google Scholar 

  12. Dudek G, Jenkin M (2010) Computational principles of mobile robotics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  13. Shao L, Wang Y, Guo B, Chen X (2015) A review over state of the art of in-pipe robot. IEEE Int Conf Mechatronics Autom. https://doi.org/10.1109/ICMA.2015.7237824

    Article  Google Scholar 

  14. Ren T, Zhang Y, Li Y, Chen Y, Liu Q (2019) Driving mechanisms, motion, and mechanics of screw drive in-pipe robots: a review. Appl Sci 9:2514. https://doi.org/10.3390/app9122514

    Article  Google Scholar 

  15. Book R. Guidelines for Human Settlement Planning and Design. Compil under Patronage SA Dep Hous by CSIR Build Constr Technol Div 2004

  16. Wu Y, Mittmann E, Winston C, Youcef-Toumi K. (2019) A Practical Minimalism Approach to In-pipe Robot Localization. In: 2019 American control conference (ACC), 3180-3187. https://doi.org/10.23919/ACC.2019.8814648.

  17. Kazeminasab S, Aghashahi M, Wu R, and Banks M (2020) Localization Techniques for In-Pipe Robots in Water Distribution Systems, IEEE 8th international conference on control, mechatronics and automation (ICCMA), 6–11, https://doi.org/10.1109/ICCMA51325.2020.9301560

  18. Kazeminasab S, Banks MK (2021) A localization and navigation method for an in-pipe robot in water distribution system through wireless control towards long-distance inspection. IEEE Access. https://doi.org/10.1109/ACCESS.2021.3106880

    Article  Google Scholar 

  19. Siqueira E, Azzolin R, Botelho S, Oliveira V. (2016) Sensors data fusion to navigate inside pipe using Kalman Filter. In: 2016 IEEE 21st international conference on emerging technologies and factory automation (ETFA), 1–5. https://doi.org/10.1109/ETFA.2016.7733540

  20. Maneewarn T, Thung-od K. (2015) Icp-ekf localization with adaptive covariance for a boiler inspection robot. In: 2015 IEEE 7th international conference on cybernetics and intelligent systems (CIS) and IEEE conference on robotics, automation and mechatronics (RAM), 216–221. https://doi.org/10.1109/ICCIS.2015.7274623

  21. Ma K, Schirru MM, Zahraee AH, Dwyer-Joyce R, Boxall J, Dodd TJ et al (2017) Robot mapping and localisation in metal water pipes using hydrophone induced vibration and map alignment by dynamic time warping. IEEE Int Conf Robot Autom. https://doi.org/10.1109/ICRA.2017.7989296

    Article  Google Scholar 

  22. Ma K, Schirru M, Zahraee AH, Dwyer-Joyce R, Boxall J, Dodd TJ et al (2017) PipeSLAM: simultaneous localisation and mapping in feature sparse water pipes using the Rao-Blackwellised particle filter. IEEE Int Conf Adv Intell Mechatron. https://doi.org/10.1109/AIM.2017.8014224

    Article  Google Scholar 

  23. Seco T, Rizzo C, Espelosín J, Villarroel JL (2016) A robot localization system based on rf fadings using particle filters inside pipes. In: 2016 international conference on autonomous robot systems and competitions (ICARSC), 28–34.https://doi.org/10.1109/ICARSC.2016.22

  24. Brown L, Carrasco J, Watson S, Lennox B (2019) Elbow detection in pipes for autonomous navigation of inspection robots. J Intell Robot Syst 95:527–541. https://doi.org/10.1007/s10846-018-0904-7

    Article  Google Scholar 

  25. Wu D, Chatzigeorgiou D, Youcef-Toumi K, Ben-Mansour R (2015) Node localization in robotic sensor networks for pipeline inspection. IEEE Trans Ind Informat 12:809–819. https://doi.org/10.1109/TII.2015.2469636

    Article  Google Scholar 

  26. Kumar EV, Robust JJ (2013) LQR controller design for stabilizing and trajectory tracking of inverted pendulum. Procedia Eng 64:169–178. https://doi.org/10.1016/j.proeng.2013.09.088

    Article  Google Scholar 

  27. Kazeminasab S, Jafari R, and Banks M (2021) An LQR-assisted Control Algorithm for an Under-actuated In-pipe Robot in Water Distribution Systems,” In: proceedings of the 36th annual ACM symposium on applied computing (SAC '21) 811–814. doi: https://doi.org/10.1145/3412841.3442097

  28. Tourajizadeh H, Rezaei M, Sedigh AH (2018) Optimal control of screw in-pipe inspection robot with controllable pitch rate. J Intell Robot Syst 90:269–286. https://doi.org/10.1007/s10846-017-0658-7

    Article  Google Scholar 

  29. Kakogawa A, Ma S (2019) An in-pipe inspection module with an omnidirectional bent-pipe self-adaptation mechanism using a joint torque control. In: 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS), 4347–4352. https://doi.org/10.1109/IROS40897.2019.8968221

  30. Wang S-C et al (2018) Automated pipe defect detection and categorization using camera/laser-based profiler and artificial neural network. Sensors 5:1–6. https://doi.org/10.1109/ICRAE50850.2020.9310805

    Article  Google Scholar 

  31. Zhang WJ, Van Luttervelt CA (2011) Toward a resilient manufacturing system”. CIRP Ann 60:469–472. https://doi.org/10.1016/j.cirp.2011.03.041

    Article  Google Scholar 

  32. Wu R, Salim WW, Malhotra S, Brovont A, Park J, Pekarek S, et al (2013) Self-powered mobile sensor for in-pipe potable water quality monitoring. In: proceedings of the 17th international conference on miniaturized systems for chemistry and life sciences, 14–6

  33. Mahony R, Hamel T, Pflimlin J-M (2008) Nonlinear complementary filters on the special orthogonal group. IEEE Trans Automat Contr 53:1203–1218. https://doi.org/10.1109/TAC.2008.923738

    Article  MathSciNet  MATH  Google Scholar 

  34. Kazeminasab S, Akbari A, Jafari R, Banks MK (2021) Design, Characterization, and Control of a Size Adaptable In-pipe Robot for Water Distribution Systems. In: 2021 22nd IEEE international conference on industrial technology (ICIT), https://doi.org/10.1109/ICIT46573.2021.9453583

  35. CSIR. Guidelines for Human Settlement Planning and Design. 2005

  36. Takeshima H, Takayama T (2018) Development of a steerable in-pipe locomotive device with six braided tubes. ROBOMECH J 5:1–11. https://doi.org/10.1186/s40648-018-0127-5

    Article  Google Scholar 

  37. Qu Y, Durdevic P, Yang Z (2018) Smart-spider: autonomous self-driven in-line robot for versatile pipeline inspection. Ifac-Papersonline 51:251–256. https://doi.org/10.1016/j.ifacol.2018.06.385

    Article  Google Scholar 

  38. Bandala AA, Maningo JMZ, Fernando AH, Vicerra RRP, Antonio MAB, Diaz JAI et al (2019) Control and mechanical design of a multi-diameter tri-legged in-pipe traversing robot. IEEE/SICE Int Symp Syst Integr. https://doi.org/10.1109/SII.2019.8700363

    Article  Google Scholar 

  39. Kakogawa A, Ma S (2018) Design of a multilink-articulated wheeled pipeline inspection robot using only passive elastic joints. Adv Robot 32:37–50. https://doi.org/10.1080/01691864.2017.1393348

    Article  Google Scholar 

  40. Kim HM, Choi YS, Lee YG, Choi HR (2016) Novel mechanism for in-pipe robot based on a multiaxial differential gear mechanism. IEEE/ASME Trans Mechatron 22:227–235. https://doi.org/10.1109/TMECH.2016.2621978

    Article  Google Scholar 

  41. Cousins S (2010) Ros on the pr2 [ros topics]. IEEE Robot Autom Mag 17:23–25. https://doi.org/10.1109/MRA.2010.938502

    Article  Google Scholar 

  42. Kazeminasab S, Janfaza V, Razavi M, Banks MK (2021) Smart Navigation for an In-pipe Robot Through Multi-phase Motion Control and Particle Filtering Method. In: IEEE international conference on electro information technology (EIT). https://doi.org/10.1109/EIT51626.2021.9491887

Download references

Acknowledgements

This research is supported by Texas A&M Engineering Experiment Station (TEES) internal financial source by Dr. M Katherine Banks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saber Kazeminasab.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest during this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

1.1 Robot modeling

Figure 

Fig. 18
figure 18

Free body diagram of the robot in a pipe with an inclination angle, \(\alpha\)

18 shows the free body diagram of the robot inside the pipeline. \(F_{i}\), \(i = 1,2,3\) are traction forces that the motors generate. We have

$$ F_{i} = \frac{{\tau_{i} }}{R}\quad i = 1,2,3 $$
(3)

In Eq. (3), \(\tau_{i}\), \(R\), and \(i\) are motor torque, wheel radius, and the wheels numbers, respectively. The motor torque (\(\tau\)) is linearly computed with current passing through it. We can express the governing equation of the gear motors with the following set of equations:

$$ \begin{array}{*{20}c} {\frac{{v_{{{\text{co}}}} }}{{L_{m} }} - \frac{{v_{e} }}{{L_{m} }} - \frac{{R_{m} }}{{L_{m} }}i_{m} = \frac{{{\text{d}}i_{m} }}{{{\text{d}}t}}} \\ {v_{e} = K_{v} \dot{\vartheta }} \\ {\tau_{m} = K_{v} i_{m} } \\ {\frac{{n^{2} }}{{I_{l} + n^{2} I_{R} }}\tau_{m} = \ddot{\vartheta }} \\ \end{array} $$
(4)

The parameters in Eq. (4) are described in Table

Table 4 Parameters in gear-motors dynamical equations

4.

$$ \sum F_{x} = {\text{ma}} \to F_{1} + F_{1} + F_{1} - {\text{mg}}\sin \left( \alpha \right) - F_{d} = {\text{ma}} = m\ddot{x} $$
(5)
$$ \sum M_{Y} = I_{{{\text{yy}}}} \ddot{\phi } \to \frac{\sqrt 3 }{2}F_{3} L\cos \left( {\theta_{3} } \right) - \frac{\sqrt 3 }{2}F_{2} L\cos \left( {\theta_{2} } \right) = I_{{{\text{yy}}}} \ddot{\phi } $$
(6)
$$ \sum M_{z} = I_{{{\text{zz}}}} \ddot{\psi } \to \frac{1}{2}F_{3} L\cos \left( {\theta_{3} } \right) + \frac{1}{2}F_{2} L\cos \left( {\theta_{2} } \right) - F_{1} L\cos \left( {\theta_{1} } \right) - {\text{mg}}\cos \left( \alpha \right)L\sin \left( {\theta_{1} } \right) = I_{{{\text{zz}}}} \ddot{\psi } $$
(7)

The parameters in Eqs.)5–7( are listed in Table

Table 5 Parameters in robot dynamical equations

5. The central processor is desired to remain at the center of the pipe, hence, the arm angles (\(\theta_{i} , i = 1,2,3\)) are equal to each other and we have

$$ \cos \left( {{\uptheta }_{{\text{i}}} } \right) = \frac{{\text{D}}}{{2{\text{L}}}} $$
(8)

where \(D\) is the pipe diameter and is variable.

Appendix B

2.1 Linear quadratic regulator (LQR) controller

To design the LQR controller, considering the stabilizing states, \(x_{s} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} \phi & {\dot{\phi }} \\ \end{array} } & {\begin{array}{*{20}c} \psi & {\dot{\psi }} \\ \end{array} } \\ \end{array} } \right]^{T}\), Eqs. (6) and (7) are linearized around the equilibrium point, \(x_{s}^{e} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } & {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } \\ \end{array} } \right]^{T}\) with Taylor expansion and neglect higher-order terms. The resulting equations and construct the system’s auxiliary matrices. We have:

$$ x_{s} = \left[ {\begin{array}{*{20}r} \hfill {x_{1} = \phi } \\ \hfill {x_{2} = \dot{\phi }} \\ \hfill {x_{3} = \psi } \\ \hfill {x_{4} = \dot{\psi }} \\ \end{array} } \right] $$
(9)
$$ u = \left[ {\begin{array}{*{20}c} {\tau_{1} = u_{1} } \\ {\tau_{2} = u_{2} } \\ {\tau_{3} = u_{3} } \\ \end{array} } \right]{ } $$
(10)

Hence, we can write

$$ \dot{x}_{{\varvec{s}}} = \left[ {\begin{array}{*{20}c} {x_{2} } \\ {\zeta_{1} } \\ {x_{4} } \\ {\zeta_{2} } \\ \end{array} } \right] = {\varvec{F}} = \left[ {\begin{array}{*{20}c} {F_{1} } \\ {F_{2} } \\ {F_{3} } \\ {F_{4} } \\ \end{array} } \right] $$
(11)

where \(\zeta_{1} = \frac{1}{{{\text{RI}}_{{{\text{yy}}}} }}\left[ {\frac{\sqrt 3 }{2}\tau_{3} L\cos \left( {\theta_{3} } \right) - \frac{\sqrt 3 }{2}\tau_{2} L\cos \left( {\theta_{2} } \right)} \right]\) and \(\zeta_{2} = \frac{1}{{I_{{{\text{zz}}}} }}\Big[ \frac{1}{2R}\tau_{3} L\cos \left( {\theta_{3} } \right) + \frac{1}{2R}\tau_{2} L\cos \left( {\theta_{2} } \right) - \frac{1}{R}\tau_{1} L\cos \left( {\theta_{1} } \right) - {\text{mg}}\sin \alpha \sin \theta_{1} \Big]\).

$$ A = \left[ {\begin{array}{*{20}c} {\frac{{\partial F_{1} }}{{\partial x_{1} }}} & {\frac{{\partial F_{1} }}{{\partial x_{2} }}} & {\frac{{\partial F_{1} }}{{\partial x_{3} }}} & {\frac{{\partial F_{1} }}{{\partial x_{4} }}} \\ {\frac{{\partial F_{2} }}{{\partial x_{1} }}} & {\frac{{\partial F_{2} }}{{\partial x_{2} }}} & {\frac{{\partial F_{2} }}{{\partial x_{3} }}} & {\frac{{\partial F_{2} }}{{\partial x_{4} }}} \\ {\frac{{\partial F_{3} }}{{\partial x_{1} }}} & {\frac{{\partial F_{3} }}{{\partial x_{2} }}} & {\frac{{\partial F_{3} }}{{\partial x_{3} }}} & {\frac{{\partial F_{3} }}{{\partial x_{4} }}} \\ {\frac{{\partial F_{4} }}{{\partial x_{1} }}} & {\frac{{\partial F_{4} }}{{\partial x_{2} }}} & {\frac{{\partial F_{4} }}{{\partial x_{3} }}} & {\frac{{\partial F_{4} }}{{\partial x_{4} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ \end{array} } \right]{ } $$
(12)
$$ B = \left[ {\begin{array}{*{20}c} {\frac{{\partial F_{1} }}{{\partial u_{1} }}} & {\frac{{\partial F_{1} }}{{\partial u_{2} }}} & {\frac{{\partial F_{1} }}{{\partial u_{3} }}} \\ {\frac{{\partial F_{2} }}{{\partial u_{1} }}} & {\frac{{\partial F_{2} }}{{\partial u_{2} }}} & {\frac{{\partial F_{2} }}{{\partial u_{3} }}} \\ {\frac{{\partial F_{3} }}{{\partial u_{1} }}} & {\frac{{\partial F_{3} }}{{\partial u_{2} }}} & {\frac{{\partial F_{3} }}{{\partial u_{3} }}} \\ {\frac{{\partial F_{4} }}{{\partial u_{1} }}} & {\frac{{\partial F_{4} }}{{\partial u_{2} }}} & {\frac{{\partial F_{4} }}{{\partial u_{3} }}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & { - \frac{\sqrt 3 D}{{4{\text{RI}}_{{{\text{yy}}}} }}} & {\frac{\sqrt 3 D}{{4{\text{RI}}_{{{\text{yy}}}} }}} \\ 0 & 0 & 0 \\ { - \frac{{\text{D}}}{{2{\text{RI}}_{{{\text{zz}}}} }}} & {\frac{D}{{4{\text{RI}}_{{{\text{zz}}}} }}} & {\frac{{\text{D}}}{{4{\text{RI}}_{{{\text{zz}}}} }}} \\ \end{array} } \right]{ } $$
(13)

Pipe diameter, \(D\), is generally variable and since in our experiments, the pipe diameter is \(\approx\) 18 cm, we have \(B = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 \\ 0 & { - 123.72} & {123.72} \\ 0 & 0 & 0 \\ { - 193.55} & {96.77} & {96.77} \\ \end{array} } \right]\). Based on the motion sensors in the robot, output matrix in state-space representation,

\(C = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 & 1 \\ \end{array} } & {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } \\ {\begin{array}{*{20}c} 0 & 0 \\ \end{array} } & {\begin{array}{*{20}c} 1 & 0 \\ \end{array} } \\ \end{array} } \right].\) The state-space representation of the system in terms of stabilization is written as

$$ \begin{array}{*{20}c} {\dot{x}_{s} = {\text{Ax}}_{s} + {\text{Bu}}} \\ {y = {\text{Cx}}_{s} } \\ \end{array} $$
(14)

As for the LQR controller, a cost function, \(J\left( K \right)\), is defined that is written as

$$ J\left( K \right) = \frac{1}{2}\mathop \smallint \limits_{0}^{\infty } \left[ {x_{s}^{T} \left( t \right){\text{Qx}}_{s} \left( t \right) + u\left( t \right)^{T} {\text{Ru}}\left( t \right)} \right]{\text{d}}t $$
(15)

where \(Q\) is the nonnegative definite matrix that weights state vector,\(Q = \left[ {\begin{array}{*{20}c} {200} & 0 & 0 & 0 \\ 0 & {10} & 0 & 0 \\ 0 & 0 & {200} & 0 \\ 0 & 0 & 0 & {10} \\ \end{array} } \right]\), and \(R.\) The positive-definite matrix that weights the input vector and \(R = \left[ {\begin{array}{*{20}c} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{array} } \right]\). To minimize the cost function, \(K\), gain matrix is computed with

$$ K = R^{ - 1} B^{T} P $$
(16)

\(P\) in Eq. (16) is computed with algebraic Ricatti equation:

$$ - {\text{PA}} - A^{T} P - Q + {\text{PBR}}^{ - 1} B^{T} P = 0 $$
(17)

We have \(K = \left[ {\begin{array}{*{20}c} { - 4.92} & { - 1.12} & { - 13.26} & { - 2.98} \\ { - 9.37} & { - 2.11} & {3.48} & {0.78} \\ { - 9.37} & { - 2.11} & {3.48} & {0.78} \\ \end{array} } \right]\) And the control input of the LQR controller is computed as

$$ u = - {\text{Kx}}_{s} $$
(18)

As for velocity controllers, we considered three PID controllers that each of them controls the velocity of one wheel. The parameters of the PID controllers are listed in Table

Table 6 PID Parameters for velocity tracking controller

6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazeminasab, S., Banks, M.K. Towards long-distance inspection for in-pipe robots in water distribution systems with smart motion facilitated by particle filter and multi-phase motion controller. Intel Serv Robotics 15, 259–273 (2022). https://doi.org/10.1007/s11370-022-00410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-022-00410-0

Keywords

Navigation