[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Hybrid adaptive differential evolution for mobile robot localization

  • Original Research Paper
  • Published:
Intelligent Service Robotics Aims and scope Submit manuscript

Abstract

This paper introduces a new evolutionary optimization algorithm named hybrid adaptive differential evolution (HADE) and applies it to the mobile robot localization problem. The behaviour of evolutionary algorithms is highly dependent on the parameter selection. This algorithm utilizes an adaptive method to tune the mutation parameter to enhance the rate of convergence and eliminate the need for manual tuning. A hybrid method for mutation is also introduced to give more diversity to the population. This method which constantly switches between two mutation schemes guarantees a sufficient level of diversity to avoid local optima. We use a well-known test set in continuous domain to evaluate HADE’s performance against the standard version of differential evolution (DE) and a self-adaptive version of the algorithm. The results show that HADE outperforms DE and self-adaptive DE in three of four benchmarks. Moreover, we investigate the performance of HADE in the well-known localization problem of mobile robots. Results show that HADE is capable of estimating the robot’s pose accurately with a decreased number of individuals needed for convergence compared with DE and particle swarm optimization methods. Comparative study exposes HADE algorithm as a competitive method for mobile robot localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bergey P, Ragsdale C (2005) Modified differential evolution: a greedy random strategy for genetic recombination. Omega 33(3): 255–265

    Article  Google Scholar 

  2. Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006) Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6): 646–657

    Article  Google Scholar 

  3. Brest J, Zumer V, Maucec M (2006) Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In: IEEE congress on evolutionary computation 2006, pp 215–222

  4. Burgard W, Derr A, Fox D, Cremers A (1998) Integrating global position estimation and position tracking for mobile robots: the dynamic markov localization approach. In: Proceedings of 1998 IEEE/RSJ international conference on intelligent robots and systems, vol 2, pp 730–735

  5. Dellaert F, Fox D, Burgard W, Thrun S (1999) Monte carlo localization for mobile robots. In: IEEE international conference on robotics and automation, pp 1322–1328

  6. Gasparri A, Panzieri S, Pascucci F (2009) A spatially structured genetic algorithm for multi-robot localization. Intell Serv Robot 2(1): 31–40

    Article  Google Scholar 

  7. Gutmann J (2002) Markov–kalman localization for mobile robots. In: Proceedings of the 16th international conference on pattern recognition, vol 2, pp 601–604

  8. Ingber L (1993) Simulated annealing: practice versus theory. Math Comput Model 18(11): 29–58

    Article  MathSciNet  MATH  Google Scholar 

  9. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE international conference on neural networks, vol 4

  10. Liu J, Lampinen J (2002) On setting the control parameter of the differential evolution method. In: Proceedings of the 8th international conference on soft computing (MENDEL 2002), pp 11–18

  11. Moreno L, Garrido S, Munoz M (2006) Evolutionary filter for robust mobile robot global localization. Robot Auton Syst 54(7): 590–600

    Article  Google Scholar 

  12. Press W, Teukolsky S, Vetterling W, Flannery B (1992) Numerical recipes in C. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  13. Rechenberg I (1993) Evolutions strategie: optimierung technischer Systeme nach Prinzipen der biologischen Evolution 1973, 2 edn. Fromman-Holzboog Verlag, Stuttgart

    Google Scholar 

  14. Roy N The robotics data set repository. http://radish.sourceforge.net

  15. Salman A, Engelbrecht A, Omran M (2007) Empirical analysis of self-adaptive differential evolution. Eur J Oper Res 183(2): 785–804

    Article  MATH  Google Scholar 

  16. Schwefel H (1977) Numerische optimierung von computer-modellen mittels der evolutionsstrategie. Birkhauser Basel, Stuttgart

    MATH  Google Scholar 

  17. Storn R, Price K (1996) Minimizing the real functions of the ICEC’96 contest by differential, vol 50

  18. Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4): 341–359

    Article  MathSciNet  MATH  Google Scholar 

  19. Thrun S (2002) Robotic mapping: a survey. Exploring artificial intelligence in the new millennium, pp 1–35

  20. Tvrdík J (2009) Adaptation in differential evolution: a numerical comparison. Appl Soft Comput 9(3): 1149–1155

    Article  Google Scholar 

  21. Vahdat A, NourAshrafoddin N, Ghidary S (2007) Mobile robot global localization using differential evolution and particle swarm optimization. In: IEEE Congress on Evolutionary Computation, 2007, pp 1527–1534

  22. Zaharie D (2009) Influence of crossover on the behavior of differential evolution algorithms. Appl Soft Comput J 9(3): 1126–1138

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Bashiri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bashiri, M., Vatankhah, H. & Shiry Ghidary, S. Hybrid adaptive differential evolution for mobile robot localization. Intel Serv Robotics 5, 99–107 (2012). https://doi.org/10.1007/s11370-012-0106-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11370-012-0106-2

Keywords

Navigation