[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Skeletal muscle mitochondrial DNA copy number and mitochondrial DNA deletion mutation frequency as predictors of physical performance in older men and women

  • Original Article
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Mitochondrial DNA (mtDNA) quality and quantity relate to two hallmarks of aging—genomic instability and mitochondrial dysfunction. Physical performance relies on mitochondrial integrity and declines with age, yet the interactions between mtDNA quantity, quality, and physical performance are unclear. Using a validated digital PCR assay specific for mtDNA deletions, we tested the hypothesis that skeletal muscle mtDNA deletion mutation frequency (i.e., a measure of mtDNA quality) or mtDNA copy number predicts physical performance in older adults. Total DNA was isolated from vastus lateralis muscle biopsies and used to quantitate mtDNA copy number and mtDNA deletion frequency by digital PCR. The biopsies were obtained from a cross-sectional cohort of 53 adults aged 50 to 86 years. Before the biopsy procedure, physical performance measurements were collected, including VO2max, modified physical performance test score, 6-min walk distance, gait speed, grip strength, and total lean and leg mass. Linear regression models were used to evaluate the relationships between age, sex, and the outcomes. We found that mtDNA deletion mutation frequency increased exponentially with advancing age. On average from ages 50 to 86, deletion frequency increased from 0.008 to 0.15%, an 18-fold increase. Females may have lower deletion frequencies than males at older ages. We also measured declines in VO2max and mtDNA copy number with age in both sexes. The mtDNA deletion frequency measured from single skeletal muscle biopsies predicted 13.3% of the variation in VO2max. Copy number explained 22.6% of the variation in mtDNA deletion frequency and 10.4% of the lean mass variation. We found predictive relationships between age, mtDNA deletion mutation frequency, mtDNA copy number, and physical performance. These data are consistent with a role for mitochondrial function and genome integrity in maintaining physical performance with age. Analyses of mtDNA quality and quantity in larger cohorts and longitudinal studies could extend our understanding of the importance of mitochondrial DNA in human aging and longevity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lanza IR, Sreekumaran Nair K. Regulation of skeletal muscle mitochondrial function: genes to proteins. Acta Physiol (Oxford). 2010;199(4):529–47. https://doi.org/10.1111/j.1748-1716.2010.02124.x.

    Article  CAS  Google Scholar 

  3. Sun N, Youle RJ, Finkel T. The mitochondrial basis of aging. Mol Cell. 2016;61(5):654–66. https://doi.org/10.1016/j.molcel.2016.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Persson O, Muthukumar Y, Basu S, Jenninger L, Uhler JP, Berglund AK, et al. Copy-choice recombination during mitochondrial L-strand synthesis causes DNA deletions. Nat Commun. 2019;10(1):759. https://doi.org/10.1038/s41467-019-08673-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, et al. Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet. 2006;79(3):469–80.

    Article  CAS  Google Scholar 

  6. Gitschlag BL, Tate AT, Patel MR. Nutrient status shapes selfish mitochondrial genome dynamics across different levels of selection. Elife. 2020;9. https://doi.org/10.7554/eLife.56686.

  7. Herbst A, Pak JW, McKenzie D, Bua E, Bassiouni M, Aiken JM. Accumulation of mitochondrial DNA deletion mutations in aged muscle fibers: evidence for a causal role in muscle fiber loss. J Gerontol. 2007;62(3):235–45.

    Article  Google Scholar 

  8. Cheema N, Herbst A, McKenzie D, Aiken JM. Apoptosis and necrosis mediate skeletal muscle fiber loss in age-induced mitochondrial enzymatic abnormalities. Aging Cell. 2015;14(6):1085–93. https://doi.org/10.1111/acel.12399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aure K, Fayet G, Leroy JP, Lacene E, Romero NB, Lombes A. Apoptosis in mitochondrial myopathies is linked to mitochondrial proliferation. Brain. 2006;129(Pt 5):1249–59.

    Article  Google Scholar 

  10. Wanagat J, Cao Z, Pathare P, Aiken JM. Mitochondrial DNA deletion mutations colocalize with segmental electron transport system abnormalities, muscle fiber atrophy, fiber splitting, and oxidative damage in sarcopenia. FASEB J. 2001;15(2):322–32. https://doi.org/10.1096/fj.00-0320com.

    Article  CAS  PubMed  Google Scholar 

  11. Aspnes LE, Lee CM, Weindruch R, Chung SS, Roecker EB, Aiken JM. Caloric restriction reduces fiber loss and mitochondrial abnormalities in aged rat muscle. FASEB J. 1997;11(7):573–81.

    Article  CAS  Google Scholar 

  12. Bua EA, McKiernan SH, Wanagat J, McKenzie D, Aiken JM. Mitochondrial abnormalities are more frequent in muscles undergoing sarcopenia. J Appl Physiol (1985). 2002;92(6):2617–24. https://doi.org/10.1152/japplphysiol.01102.2001.

    Article  Google Scholar 

  13. Chung SS, Weindruch R, Schwarze SR, McKenzie DI, Aiken JM. Multiple age-associated mitochondrial DNA deletions in skeletal muscle of mice. Aging (Milano). 1994;6(3):193–200.

    CAS  Google Scholar 

  14. Eimon PM, Chung SS, Lee CM, Weindruch R, Aiken JM. Age-associated mitochondrial DNA deletions in mouse skeletal muscle: comparison of different regions of the mitochondrial genome. Dev Genet. 1996;18(2):107–13.

    Article  CAS  Google Scholar 

  15. Herbst A, Wanagat J, Cheema N, Widjaja K, McKenzie D, Aiken JM. Latent mitochondrial DNA deletion mutations drive muscle fiber loss at old age. Aging Cell. 2016;15:1132–9. https://doi.org/10.1111/acel.12520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee CM, Lopez ME, Weindruch R, Aiken JM. Association of age-related mitochondrial abnormalities with skeletal muscle fiber atrophy. Free Radic Biol Med. 1998;25(8):964–72.

    Article  CAS  Google Scholar 

  17. Schwarze SR, Lee CM, Chung SS, Roecker EB, Weindruch R, Aiken JM. High levels of mitochondrial DNA deletions in skeletal muscle of old rhesus monkeys. Mech Ageing Dev. 1995;83(2):91–101.

    Article  CAS  Google Scholar 

  18. Taylor SD, Ericson NG, Burton JN, Prolla TA, Silber JR, Shendure J, et al. Targeted enrichment and high-resolution digital profiling of mitochondrial DNA deletions in human brain. Aging Cell. 2014;13(1):29–38. https://doi.org/10.1111/acel.12146.

    Article  CAS  PubMed  Google Scholar 

  19. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet. 2006;38(5):518–20. https://doi.org/10.1038/ng1778.

    Article  CAS  PubMed  Google Scholar 

  20. Parkinson GM, Dayas CV, Smith DW. Increased mitochondrial DNA deletions in substantia nigra dopamine neurons of the aged rat. Curr Aging Sci. 2014;7(3):155–60.

    Article  CAS  Google Scholar 

  21. Reeve A, Meagher M, Lax N, Simcox E, Hepplewhite P, Jaros E, et al. The impact of pathogenic mitochondrial DNA mutations on substantia nigra neurons. J Neurosci. 2013;33(26):10790–801. https://doi.org/10.1523/JNEUROSCI.3525-12.2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song L, McMackin M, Nguyen A, Cortopassi G. Parkin deficiency accelerates consequences of mitochondrial DNA deletions and Parkinsonism. Neurobiol Dis. 2017;100:30–8. https://doi.org/10.1016/j.nbd.2016.12.024.

    Article  CAS  PubMed  Google Scholar 

  23. McKiernan SH, Tuen VC, Baldwin K, Wanagat J, Djamali A, Aiken JM. Adult-onset calorie restriction delays the accumulation of mitochondrial enzyme abnormalities in aging rat kidney tubular epithelial cells. Am J Physiol Ren Physiol. 2007;292(6):F1751–60. https://doi.org/10.1152/ajprenal.00307.2006.

    Article  CAS  Google Scholar 

  24. Herbst A, Lee CC, Vandiver AR, Aiken JM, McKenzie D, Hoang A, et al. Mitochondrial DNA deletion mutations increase exponentially with age in human skeletal muscle. Aging Clin Exp Res. 2020. https://doi.org/10.1007/s40520-020-01698-7.

  25. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, et al. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci U S A. 2005;102(15):5618–23. https://doi.org/10.1073/pnas.0501559102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Herbst A, Widjaja K, Nguy B, Lushaj EB, Moore TM, Hevener AL, et al. Digital PCR quantitation of muscle mitochondrial DNA: age, fiber type, and mutation-induced changes. J Gerontol A Biol Sci Med Sci. 2017;72(10):1327–33. https://doi.org/10.1093/gerona/glx058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miljkovic N, Lim JY, Miljkovic I, Frontera WR. Aging of skeletal muscle fibers. Ann Rehabil Med. 2015;39(2):155–62. https://doi.org/10.5535/arm.2015.39.2.155.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Larsen S, Nielsen J, Hansen CN, Nielsen LB, Wibrand F, Stride N, et al. Biomarkers of mitochondrial content in skeletal muscle of healthy young human subjects. J Physiol. 2012;590(14):3349–60. https://doi.org/10.1113/jphysiol.2012.230185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P, Wibom R, et al. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. Sci Adv. 2019;5(4):eaav9824. https://doi.org/10.1126/sciadv.aav9824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Distefano G, Goodpaster BH. Effects of exercise and aging on skeletal muscle. Cold Spring Harb Perspect Med. 2018;8(3). https://doi.org/10.1101/cshperspect.a029785.

  31. Ross R, Blair SN, Arena R, Church TS, Despres JP, Franklin BA, et al. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134(24):e653–99. https://doi.org/10.1161/CIR.0000000000000461.

    Article  PubMed  Google Scholar 

  32. Kim CH, Wheatley CM, Behnia M, Johnson BD. The effect of aging on relationships between lean body mass and VO2max in rowers. PLoS One. 2016;11(8):e0160275. https://doi.org/10.1371/journal.pone.0160275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M, et al. Gait speed and survival in older adults. JAMA. 2011;305(1):50–8. https://doi.org/10.1001/jama.2010.1923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Harber MP, Kaminsky LA, Arena R, Blair SN, Franklin BA, Myers J, et al. Impact of cardiorespiratory fitness on all-cause and disease-specific mortality: advances since 2009. Prog Cardiovasc Dis. 2017;60(1):11–20. https://doi.org/10.1016/j.pcad.2017.03.001.

    Article  PubMed  Google Scholar 

  35. Rogers MA, Hagberg JM, Martin WH 3rd, Ehsani AA, Holloszy JO. Decline in VO2max with aging in master athletes and sedentary men. J Appl Physiol (1985). 1990;68(5):2195–9. https://doi.org/10.1152/jappl.1990.68.5.2195.

    Article  CAS  Google Scholar 

  36. Coen PM, Jubrias SA, Distefano G, Amati F, Mackey DC, Glynn NW, et al. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults. J Gerontol A Biol Sci Med Sci. 2013;68(4):447–55. https://doi.org/10.1093/gerona/gls196.

    Article  PubMed  Google Scholar 

  37. Carrick-Ranson G, Hastings JL, Bhella PS, Shibata S, Fujimoto N, Palmer D, et al. The effect of age-related differences in body size and composition on cardiovascular determinants of VO2max. J Gerontol A Biol Sci Med Sci. 2013;68(5):608–16. https://doi.org/10.1093/gerona/gls220.

    Article  PubMed  Google Scholar 

  38. Fleg JL, Morrell CH, Bos AG, Brant LJ, Talbot LA, Wright JG, et al. Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation. 2005;112(5):674–82. https://doi.org/10.1161/CIRCULATIONAHA.105.545459.

    Article  PubMed  Google Scholar 

  39. Standley RA, Distefano G, Trevino MB, Chen E, Narain NR, Greenwood B, et al. Skeletal muscle energetics and mitochondrial function are impaired following 10 days of bed rest in older adults. J Gerontol A Biol Sci Med Sci. 2020;75(9):1744–53. https://doi.org/10.1093/gerona/glaa001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pollock RD, O'Brien KA, Daniels LJ, Nielsen KB, Rowlerson A, Duggal NA, et al. Properties of the vastus lateralis muscle in relation to age and physiological function in master cyclists aged 55-79 years. Aging Cell. 2018;17(2):e12735. https://doi.org/10.1111/acel.12735.

    Article  CAS  PubMed Central  Google Scholar 

  41. DiMauro S. Mitochondrial myopathies. Curr Opin Rheumatol. 2006;18(6):636–41. https://doi.org/10.1097/01.bor.0000245729.17759.f2.

    Article  CAS  PubMed  Google Scholar 

  42. Hou Y, Xie Z, Zhao X, Yuan Y, Dou P, Wang Z. Appendicular skeletal muscle mass: a more sensitive biomarker of disease severity than BMI in adults with mitochondrial diseases. PLoS One. 2019;14(7):e0219628. https://doi.org/10.1371/journal.pone.0219628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brown M, Sinacore DR, Binder EF, Kohrt WM. Physical and performance measures for the identification of mild to moderate frailty. J Gerontol A Biol Sci Med Sci. 2000;55(6):M350–5. https://doi.org/10.1093/gerona/55.6.m350.

    Article  CAS  PubMed  Google Scholar 

  44. Hennessey JV, Chromiak JA, Della Ventura S, Guertin J, MacLean DB. Increase in percutaneous muscle biopsy yield with a suction-enhancement technique. J Appl Physiol (1985). 1997;82(6):1739–42. https://doi.org/10.1152/jappl.1997.82.6.1739.

    Article  CAS  Google Scholar 

  45. Box G, Cox D. An analysis of transformations. J R Stat Soc Ser B Methodol. 1964;26(2):211–52.

    Google Scholar 

  46. Hebert SL, Marquet-de Rouge P, Lanza IR, McCrady-Spitzer SK, Levine JA, Middha S, et al. Mitochondrial aging and physical decline: insights from three generations of women. J Gerontol. 2015;70(11):1409–17. https://doi.org/10.1093/gerona/glv086.

    Article  CAS  Google Scholar 

  47. Lexell J, Taylor CC, Sjostrom M. What is the cause of the ageing atrophy? Total number, size and proportion of different fiber types studied in whole vastus lateralis muscle from 15- to 83-year-old men. J Neurol Sci. 1988;84(2-3):275–94.

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Institute on Aging at the National Institutes of Health (grant numbers R56AG060880, R01AG055518, K02AG059847, and R21AR072950).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Wanagat.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbst, A., Prior, S.J., Lee, C.C. et al. Skeletal muscle mitochondrial DNA copy number and mitochondrial DNA deletion mutation frequency as predictors of physical performance in older men and women. GeroScience 43, 1253–1264 (2021). https://doi.org/10.1007/s11357-021-00351-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00351-z

Keywords

Navigation