[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Select aging biomarkers based on telomere length and chronological age to build a biological age equation

  • Published:
AGE Aims and scope Submit manuscript

Abstract

The purpose of this study is to build a biological age (BA) equation combining telomere length with chronological age (CA) and associated aging biomarkers. In total, 139 healthy volunteers were recruited from a Chinese Han cohort in Beijing. A genetic index, renal function indices, cardiovascular function indices, brain function indices, and oxidative stress and inflammation indices (C-reactive protein [CRP]) were measured and analyzed. A BA equation was proposed based on selected parameters, with terminal telomere restriction fragment (TRF) and CA as the two principal components. The selected aging markers included mitral annulus peak E anterior wall (MVEA), intima-media thickness (IMT), cystatin C (CYSC), D-dimer (DD), and digital symbol test (DST). The BA equation was: BA = −2.281TRF + 26.321CYSC + 0.025DD − 104.419MVEA + 34.863IMT − 0.265DST + 0.305CA + 26.346. To conclude, telomere length and CA as double benchmarks may be a new method to build a BA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AihieSayer A, Osmond C, Briggs R, Cooper C (1999) Do all systems age together? Gerontology 45(2):83–86

    Article  CAS  Google Scholar 

  • Bae C-Y, Kang YG, Kim S, Cho C, Kang HC, Yu BY, Lee S-W, Cho KH, Lee DC, Lee K (2008) Development of models for predicting biological age (BA) with physical, biochemical, and hormonal parameters. Arch Gerontol Geriatr 47(2):253–265

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Han L, Liu Q, Shan H, Lin H, Sun X, Chen X (2010) Evaluation of biological aging process—a population-based study of healthy people in China. Gerontology 56(2):129–140

    Article  CAS  PubMed  Google Scholar 

  • Baker GT 3rd, Sprott RL (1988) Biomarkers of aging. Exp Gerontol 23(4–5):223–239

    Article  PubMed  Google Scholar 

  • Baldassarre D, Veglia F, Hamsten A, Humphries SE, Rauramaa R, de Faire U, Smit AJ, Giral P, Kurl S, Mannarino E (2013) Progression of carotid intima-media thickness as predictor of vascular events results from the IMPROVE study. Arterioscler Thromb Vasc Biol 33(9):2273–2279

    Article  CAS  PubMed  Google Scholar 

  • Bansal N, Whooley MA, Regan M, McCulloch CE, Ix JH, Epel E, Blackburn E, Lin J, C-y H (2012) Association between kidney function and telomere length: the heart and soul study. Am J Nephrol 36(5):405–411

    Article  PubMed Central  PubMed  Google Scholar 

  • Bekaert S, De Meyer T, Van Oostveldt P (2005) Telomere attrition as ageing biomarker. Anticancer Res 25(4):3011–3021

    CAS  PubMed  Google Scholar 

  • Benetos A, Okuda K, Lajemi M, Kimura M, Thomas F, Skurnick J, Labat C, Bean K, Aviv A (2001) Telomere length as an indicator of biological aging the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 37(2):381–385

    Article  CAS  PubMed  Google Scholar 

  • Blackburn EH (1991) Structure and function of telomeres. Nature 350(6319):569–573

    Article  CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2009) Validation of anti-aging drugs by treating age-related diseases. Aging 1(3):281

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boonekamp JJ, Simons MJ, Hemerik L, Verhulst S (2013) Telomere length behaves as biomarker of somatic redundancy rather than biological age. Aging Cell 2(2):330–332

    Article  Google Scholar 

  • Butler RN, Sprott R, Warner H, Bland J, Feuers R, Forster M, Fillit H, Harman SM, Hewitt M, Hyman M (2004) Biomarkers of aging: from primitive organisms to humans. J Gerontol Ser A 59:560–567

    Article  Google Scholar 

  • Cuende JI, Cuende N, Calaveras-Lagartos J (2010) How to calculate vascular age with the SCORE project scales: a new method of cardiovascular risk evaluation. Eur Heart J 31(19):2351–2358

    Article  PubMed  Google Scholar 

  • De Meyer T, Rietzschel ER, De Buyzere ML, Langlois MR, De Bacquer D, Segers P, Van Damme P, De Backer GG, Van Oostveldt P, Van Criekinge W (2009) Systemic telomere length and preclinical atherosclerosis: the Asklepios Study. Eur Heart J 30(24):3074–3081

    Article  PubMed  Google Scholar 

  • Dharnidharka VR, Kwon C, Stevens G (2002) Serum cystatin C is superior to serum creatinine as a marker of kidney function: a meta-analysis. Am J Kidney Dis 40(2):221–226

    Article  CAS  PubMed  Google Scholar 

  • Dubina TL, Mints AYa, Zhuk, EV (1984) Biological age and its estimation. III. Introduction of a correction to the multiple regression model of biological age in cross-sectional and longitudinal studies. Exp Gerontol 19(2):133–143

  • Emberson J, Haynes R, Dasgupta T, Mafham M, Landray M, Baigent C, Clarke R (2010) Cystatin C and risk of vascular and nonvascular mortality: a prospective cohort study of older men. J Intern Med 268(2):145–154

    Article  CAS  PubMed  Google Scholar 

  • Fitzpatrick AL, Kronmal RA, Gardner JP, Psaty BM, Jenny NS, Tracy RP, Walston J, Kimura M, Aviv A (2007) Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 165(1):14–21

    Article  PubMed  Google Scholar 

  • Fossel M (2012) Use of telomere length as a biomarker for aging and age-related disease. Curr Transl Geriatr Gerontol Rep 1(2):121–127

    Article  Google Scholar 

  • Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408(6809):255–262

    Article  CAS  PubMed  Google Scholar 

  • Guinot C, Malvy DJ-M, Ambroisine L, Latreille J, Mauger E, Tenenhaus M, Morizot F, Lopez S, Le Fur I, Tschachler E (2002) Relative contribution of intrinsic vs extrinsic factors to skin aging as determined by a validated skin age score. Arch Dermatol 138(11):1454

    Article  PubMed  Google Scholar 

  • Gunn DA, Rexbye H, Griffiths CE, Murray PG, Fereday A, Catt SD, Tomlin CC, Strongitharm BH, Perrett DI, Catt M (2009) Why some women look young for their age. PLoS ONE 4(12):e8021

    Article  PubMed Central  PubMed  Google Scholar 

  • Gupta M, Divyashree R, Abhilash P, Bijle MNA, Murali K (2013) Correlation between chronological age, dental age and skeletal age among monozygoyic and dizygotic twins. J Int Oral Health: JIOH 5(1):16

    PubMed Central  PubMed  Google Scholar 

  • Hägg U, Matsson L (1985) Dental maturity as an indicator of chronological age: the accuracy and precision of three methods. Eur J Orthod 7(1):25

    Article  PubMed  Google Scholar 

  • Halcox JP, Donald AE, Ellins E, Witte DR, Shipley MJ, Brunner EJ, Marmot MG, Deanfield JE (2009) Endothelial function predicts progression of carotid intima-media thickness. Circulation 119(7):1005–1012

    Article  PubMed  Google Scholar 

  • Harris SE, Deary IJ, MacIntyre A, Lamb KJ, Radhakrishnan K, Starr JM, Whalley LJ, Shiels PG (2006) The association between telomere length, physical health, cognitive ageing, and mortality in non-demented older people. Neurosci Lett 406(3):260–264

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson H (1972) Evaluation of a mental test score for assessment of mental impairment in the elderly. Age Ageing 1(4):233–238

    Article  CAS  PubMed  Google Scholar 

  • Hodkinson H (2012) Evaluation of a mental test score for assessment of mental impairment in the elderly. Age Ageing 41(suppl_3):iii35–iii40

    Article  PubMed  Google Scholar 

  • Hollingsworth JW, Hashizume A, Jablon S (1965) Correlations between tests of aging in Hiroshima subjects—an attempt to define "physiologic age". Yale J Biol Med 38(1):11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hong S-J, Lui CSM, Hahn J, Moon JY, Kim TK (2013) How old are you really? Cognitive age in technology acceptance. Decis Support Syst 56:122–130

    Google Scholar 

  • Jee H, Jeon BH, Kim YH, Kim H-K, Choe J, Park J, Jin Y (2012) Development and application of biological age prediction models with physical fitness and physiological components in Korean adults. Gerontology 58(4):344–353

    Article  PubMed  Google Scholar 

  • Johnson TE (2006) Recent results: biomarkers of aging. Exp Gerontol 41(12):1243–1246

    Article  CAS  PubMed  Google Scholar 

  • Jones DM, Song X, Rockwood K (2004) Operationalizing a frailty index from a standardized comprehensive geriatric assessment. J Am Geriatr Soc 52(11):1929–1933

    Article  PubMed  Google Scholar 

  • Lee M, Saver JL, Huang W-H, Chow J, Chang K-H, Ovbiagele B (2010) Impact of elevated cystatin C level on cardiovascular disease risk in predominantly high cardiovascular risk populations a meta-analysis. Circ: Cardiovasc Qual Outcome 3(6):675–683

    Google Scholar 

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed Central  PubMed  Google Scholar 

  • MacDonald SWS, Dixon RA, Cohen AL, Hazlitt JE (2004) Biological age and 12-year cognitive change in older adults: findings from the Victoria longitudinal study. Gerontology 50(2):64–81

    Article  PubMed  Google Scholar 

  • Majkić-Singh N (2011) What is a biomarker? From its discovery to clinical application. J Med Biochem 30(3):186–192

    Google Scholar 

  • Mak K (2013) The normal physiology of aging. Colorectal cancer in the elderly. Springer, Heidelberg

  • Mather KA, Jorm AF, Milburn PJ, Tan X, Easteal S, Christensen H (2010) No associations between telomere length and age-sensitive indicators of physical function in mid and later life. J Gerontol A: Biol Med Sci 65(8):792–799

    Article  Google Scholar 

  • Mather KA, Jorm AF, Parslow RA, Christensen H (2011) Is telomere length a biomarker of aging? A review. J Gerontol A: Biol Med Sci 66(2):202–213

    Article  Google Scholar 

  • McClearn GE (1997) Biomarkers of age and aging. Exp Gerontol 32(1–2):87–94

    Article  CAS  PubMed  Google Scholar 

  • Mitchell BD, Hsueh WC, King TM, Pollin TI, Sorkin J, Agarwala R, SchaÈffer AA, Shuldiner AR (2001) Heritability of life span in the Old Order Amish. Am J Med Genet 102(4):346–352

    Article  CAS  PubMed  Google Scholar 

  • Mitnitski A, Song X, Rockwood K (2013) Assessing biological aging: the origin of deficit accumulation. Biogerontology 14(6):709–717

    Google Scholar 

  • Mooradian AD (1990) Biomarkers of aging: do we know what to look for? J Gerontol 45(6):B183–B186

    Article  CAS  PubMed  Google Scholar 

  • Müezzinler A, Zaineddin AK, Brenner H (2013) A systematic review of leukocyte telomere length and age in adults. Ageing Res Rev 12(2):509–519

    Article  PubMed  Google Scholar 

  • Nakamura E, Miyao K (2007) A method for identifying biomarkers of aging and constructing an index of biological age in humans. J Gerontol A: Biol Med Sci 62(10):1096–1105

    Article  Google Scholar 

  • Nakamura E, Miyao K (2008) Sex differences in human biological aging. J Gerontol A: Biol Med Sci 63(9):936–944

    Article  Google Scholar 

  • Nakamura E, Miyao K, Ozeki T (1988) Assessment of biological age by principal component analysis. Mech Ageing Dev 46(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Nakamura E, Lane MA, Roth GS, Cutler RG, Ingram DK (1994) Evaluating measures of hematology and blood chemistry in male rhesus monkeys as biomarkers of aging. Exp Gerontol 29(2):151–177

    Article  CAS  PubMed  Google Scholar 

  • Nakamura E, Lane MA, Roth GS, Ingram DK (1998) A strategy for identifying biomarkers of aging: further evaluation of hematology and blood chemistry data from a calorie restriction study in rhesus monkeys. Exp Gerontol 33(5):421–443

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell CJ, Demissie S, Kimura M, Levy D, Gardner JP, White C, D’Agostino RB, Wolf PA, Polak J, Cupples LA (2008) Leukocyte telomere length and carotid artery intimal medial thickness the Framingham heart study. Arterioscler Thromb Vasc Biol 28(6):1165–1171

    Article  PubMed Central  PubMed  Google Scholar 

  • Park J, Cho B, Kwon H, Lee C (2009) Developing a biological age assessment equation using principal component analysis and clinical biomarkers of aging in Korean men. Arch Gerontol Geriatr 49(1):7–12

    Article  PubMed  Google Scholar 

  • Polak JF, Pencina MJ, O'Leary DH, D'Agostino RB (2011) Common carotid artery intima-media thickness progression as a predictor of stroke in multi-ethnic study of atherosclerosis. Stroke 42(11):3017–3021

    Article  PubMed Central  PubMed  Google Scholar 

  • Pradhan AD, LaCroix AZ, Langer RD, Trevisan M, Lewis CE, Hsia JA, Oberman A, Kotchen JM, Ridker PM (2004) Tissue plasminogen activator antigen and D-dimer as markers for atherothrombotic risk among healthy postmenopausal women. Circulation 110(3):292–300

    Article  CAS  PubMed  Google Scholar 

  • Quinn T, Gallacher J, Deary I, Lowe G, Fenton C, Stott D (2011) Association between circulating hemostatic measures and dementia or cognitive impairment: systematic review and meta‐analyzes. J Thromb Haemost 9(8):1475–1482

    Article  CAS  PubMed  Google Scholar 

  • Rattan SI (2013) Healthy ageing, but what is health? Biogerontology 14(6):673–677

    Google Scholar 

  • Reff ME, Schneider EL, Health E-UNIo (1982) Biological markers of aging. Dept. of Health and Human Services

  • Rippon I, Kneale D, de Oliveira C, Demakakos P, Steptoe A (2013) Perceived age discrimination in older adults. Age Ageing. doi:10.1093/ageing/aft146

    PubMed Central  PubMed  Google Scholar 

  • Saeed M, Berlin RM, Cruz TD (2012) Exploring the utility of genetic markers for predicting biological age. Legal Med 14(6):279–285

    Article  CAS  PubMed  Google Scholar 

  • Sanders JL, Newman AB (2013) Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol Rev 35(1):112–131

    Article  Google Scholar 

  • Sanders JL, Cauley JA, Boudreau RM, Zmuda JM, Strotmeyer ES, Opresko PL, Hsueh WC, Cawthon RM, Li R, Harris TB (2009) Leukocyte telomere length is not associated with BMD, osteoporosis, or fracture in older adults: results from the health, aging and body composition study. J Bone Miner Res 24(9):1531–1536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K (2008) A standard procedure for creating a frailty index. BMC Geriatr 8(1):24

    Article  PubMed Central  PubMed  Google Scholar 

  • Simm A, Johnson TE (2010) Biomarkers of ageing: a challenge for the future. Exp Gerontol 45(10):731–732

    Article  PubMed  Google Scholar 

  • Skytthe A, Pedersen NL, Kaprio J, Stazi MA, Iachine I, Vaupel JW, Christensen K (2003) Longevity studies in GenomEUtwin. Twin Res 6(5):448–454

    Article  PubMed  Google Scholar 

  • Sprott RL (2010) Biomarkers of aging and disease: introduction and definitions. Exp Gerontol 45(1):2–4

    Article  CAS  PubMed  Google Scholar 

  • Sternberg SA, Wershof Schwartz A, Karunananthan S, Bergman H, Clarfield AM (2011) The identification of frailty: a systematic literature review. J Am Geriatr Soc 59(11):2129–2138

    Article  PubMed  Google Scholar 

  • Tang N, Woo J, Suen E, Liao C, Leung J, Leung P (2010) The effect of telomere length, a marker of biological aging, on bone mineral density in elderly population. Osteoporos Int 21(1):89–97

    Article  CAS  PubMed  Google Scholar 

  • Tita-Nwa F, Bos A, Adjei A, Ershler WB, Longo DL, Ferrucci L (2010) Correlates of D-dimer in older persons. Aging Clin Exp Res 22(1):20

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tsuji A, Ishiko A, Takasaki T, Ikeda N (2002) Estimating age of humans based on telomere shortening. Forensic Sci Int 126(3):197–199

    Article  CAS  PubMed  Google Scholar 

  • Ueno LM, Yamashita Y, Moritani T, Nakamura E (2003) Biomarkers of aging in women and the rate of longitudinal changes. J Physiol Anthropol Appl Hum Sci 22(1):37–46

    Article  Google Scholar 

  • Valdes A, Richards J, Gardner J, Swaminathan R, Kimura M, Xiaobin L, Aviv A, Spector T (2007) Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporos Int 18(9):1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Valdes A, Deary I, Gardner J, Kimura M, Lu X, Spector T, Aviv A, Cherkas L (2010) Leukocyte telomere length is associated with cognitive performance in healthy women. Neurobiol Aging 31(6):986–992

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wannamethee SG, Whincup PH, Lennon L, Rumley A, Lowe GD (2012) Fibrin D-dimer, tissue-type plasminogen activator, von Willebrand factor, and risk of incident stroke in older men. Stroke 43(5):1206–1211

    Article  CAS  PubMed  Google Scholar 

  • Yashin AI, Iachine IA, Harris JR (1999) Half of the variation in susceptibility to mortality is genetic: findings from Swedish twin survival data. Behav Genet 29(1):11–19

    Article  CAS  PubMed  Google Scholar 

  • Yashin AI, Arbeev KG, Akushevich I, Arbeeva L, Kravchenko J, Il’yasova D, Kulminski A, Akushevich L, Culminskaya I, Wu D (2010) Dynamic determinants of longevity and exceptional health. Curr Gerontol Geriatr Res. doi:10.1155/2010/381637

  • Zglinicki T, Martin-Ruiz C (2005) Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med 5(2):197–203

    Article  Google Scholar 

  • Zhang Z, Lu B, Sheng X, Jin N (2011) Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis 58(3):356–365

    Article  CAS  PubMed  Google Scholar 

  • Zhang WG, Bai XJ, Sun XF, Cai GY, Bai XY, Zhu SY, Zhang M, Chen XM (2014) Construction of an integral formula of biological age for a healthy chinese population using principle component analysis. J Nutr Health Aging. 18(2):137–142

    Google Scholar 

Download references

Acknowledgments

We are grateful for those who participated in this research. This work was supported by the National Basic Research Program of China (No. 2103CB530800) and the National Key Technology R&D Program (No. 2011BAI10B00).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xue-Feng Sun or Xiang-Mei Chen.

Additional information

Wei-Guang Zhang and Shu-Ying Zhu contributed equally to this work.

Appendix All indices (total 105)

Appendix All indices (total 105)

Life habits survey (20)

All subjects received a survey concerning their smoking and alcohol habits, dietary patterns, frequency of physical activity, and other lifestyle factors. Daily living conditions were assessed with the following general indicators: educational extent, marital status, occupation, number of family members, relationship between family members, housing situation, annual income, self-assessment of economic status, method of staying healthy, frequency of performing daily activities, participation in interest groups, daily living conditions, smoking status, smoking age, smoking amount, smoking cessation time, number of smokers in the household, number of smokers in the workplace, frequency of exercise for >30 min, and overall mental state over the last year.

Blood pressure and body weight measurements (5)

Measurements were made in a quiet environment after the subject had rested for >15 min. Measurements were made according to the Krotkoff 5 method. The pulse pressure was calculated as PP = systolic blood pressure (SBP) − diastolic blood pressure (DBP). The body mass index (BMI) and waist-to-hip ratio (WHR) were measured simultaneously.

Cardiovascular ultrasound measurements (25)

Cardiovascular ultrasound measurements included the following parameters: left ventricular ejection fraction (LVEF); mitral early and mitral late diastolic peak flow velocity (MVE and MVA, respectively); ratio of the peak velocity of early filling to the peak velocity of atrial filling (E/A); mitral valve annulus lateral wall, anterior wall, inferior wall, and ventricular septum of the peak velocity of early filling (MVEL, MVEA, MVEI, and MVES, respectively); mitral valve annulus lateral wall, anterior wall, inferior wall, and ventricular septum of the peak velocity of atrial filling (MVAL, MVAA, MVAI, and MVAS, respectively); maximum and minimum peak systolic velocity (SPVmax and SPVmin, respectively); maximum and minimum carotid artery end-diastolic velocity (EDVmax and EDVmin, respectively); maximum and minimum internal diameter of the carotid artery (Dmax and Dmin, respectively); maximum and minimum carotid artery intimal-medial thickness (IMTmax and IMTmin, respectively); and heart rate (HR).

Blood biochemistry measurements (13)

Blood biochemistry was examined through routine blood analysis and urinalysis procedures. Serum or urine levels of urea (UR), creatinine (Cr), triglyceride, total cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), alanine aminotransferase, alanine transaminase, total protein (TP), albumin (ALB), total bilirubin (TBIL), direct bilirubin (DBIL), and glucose (Glu) were measured.

Brain function measurement (7)

To assess brain function, the following factors were assessed: clock drawing test (CDT); stroop response time; stroop mistake number; trail making test (TMT), forward and backward digit span tasks (FDST and BDST, respectively); and mini-mental state examination (MMSE).

Genetics indicators (1)

Terminal telomere restriction fragment (TRF).

Urine (4)

The pH, specific gravity, and conductivity of urine were analyzed.

Routine blood (18)

Routine blood analyses included measurements of the following parameters: white blood cell count (WBC), lymphocytes, granulocytes (GRAN), red blood cell count (RBC), hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), red blood cell volume distribution width (RDW), platelet count (PLT), mean platelet volume (MPV), platelet distribution width (PDW), platelet hematocrit (PCT), monocytes (MON), and the relative percentage of lymphocytes (LRR%), granulocytes (RPR%), and monocytes (MPR%).

Special index (6)

Other tested indices included Cystatin C (CysC), interleukin 6 (IL-6), C-reactive protein (CRP), D-dimer (DD), fibrinogen (Fib), and GFR (dual GFR).

ECG index (7)

ST, T, QRS, QT, QTC, PR, and heart rate.

About this article

Cite this article

Zhang, WG., Zhu, SY., Bai, XJ. et al. Select aging biomarkers based on telomere length and chronological age to build a biological age equation. AGE 36, 9639 (2014). https://doi.org/10.1007/s11357-014-9639-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-014-9639-y

Keywords

Navigation