Abstract
The main challenge of using deep learning (DL) for sentiment analysis tasks is that insufficient data leads to a decrement in classification accuracy. In addition, privacy issues are always concerned for sentiment data analysis. To tackle the above two mentioned problems, We propose a model based on the federated learning framework (Fed_BERT_MSCNN), which contains a Bidirectional Encoder Represent-ations from Transformers (BERT) module and a multi-scale convolution layer. It uses the BERT_MSCNN model for training on the data sets of multiple companies, and employs the federated learning framework to collect the model parameters of different distributed nodes. Finally, these model parameters are transmitted to the central node. The central node performs a weighted average of all model parameters, sending a set of common model parameters to the distributed nodes. According to the experimental results, the proposed model performs better than the state-of-the-art models in terms of accuracy, F1-score, and computational efficiency. In addition, we optimize the model parameters in order to practice in distributed computing models for web applications.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Armbrust, M., Fox, A., Griffith, R., et al.: A view of cloud computing[J]. Communications of the ACM. 53(4), 50–58 (2010)
Azrour, M., Mabrouki, J., Guezzaz, A., et al.: New enhanced authentication protocol for internet of things[J]. Big Data Mining and Analytics. 4(1), 1–9 (2021)
Bengio, Y., Ducharme, R., Vincent, P., et al.: A neural probabilistic language model[J]. The journal of Machine Learning Research. 3, 1137–1155 (2003)
Bi, R., Liu, Q., Ren, J., et al.: Utility aware offloading for mobile-edge computing[J]. Tsinghua Science and Technology. 26(2), 239–250 (2020)
Blitzer, J., Dredze, M., Pereira, F., et al.: Boom-Boxes and Blenders: domain adaptation for sentiment classification[C]//Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics (ACL’07), Pereira. 2007, 447.
Calero, C., Mancebo, J., García, F., et al.: 5Ws of green and sustainable software[J]. Tsinghua Science and Technology. 25(3), 401–414 (2019)
Chen, Y., Sun, X., Jin, Y.: Communication-efficient federated deep learning with layerwise asynchronous model update and temporally weighted aggregation[J]. IEEE Transactions on Neural Networks and Learning Systems. 31(10), 4229–4238 (2019)
Chen, J., Cai, T., He, W., et al.: A blockchain-driven supply chain finance application for auto retail industry[J]. Entropy. 22(1), 95 (2020)
Dai, W., Kumar, A., Wei, J., et al.: High-performance distributed ML at scale through parameter server consistency models[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 29(1) (2015)
Dastjerdi, A.V., Gupta, H., Calheiros, R.N., et al.: Fog computing: Principles, architectures, and applications[M]//Internet of things. Morgan Kaufmann. 61–75 (2016)
Devlin, J., Chang, M. W., Lee, K., et al.: Bert: Pre-training of deep bidirectional transformers for language understanding[J]. arXiv preprint arXiv:1810.04805 (2018)
Gai, K., Qiu, M., Zhao, H., et al.: Dynamic energy-aware cloudlet-based mobile cloud computing model for green computing[J]. Journal of Network and Computer Applications. 59, 46–54 (2016)
Guo, H.Y.: Text classification based on word vector and topic vector[D]. Wuhan: Huazhong University of Science and Technology. 4–24 (2016)
He, Q., Yan, J., Yang, Y., et al.: Chord4s: A p2p-based decentralised service discovery approach[C]//2008 IEEE International Conference on Services Computing. IEEE, 1: 221-228 (2008)
He, Q., Zhou, R., Zhang, X., et al.: Keyword search for building service-based systems[J]. IEEE Transactions on Software Engineering. 43(7), 658–674 (2016)
Ho, Q., Cipar, J., Cui, H., et al.: More effective distributed ml via a stale synchronous parallel parameter server[C]//Advances in neural information processing systems. 1223-1231 (2013)
Hu, M., Ji, Z., Yan, K., et al.: Detecting anomalies in time series data via a meta-feature based approach[J]. IEEE Access. 6, 27760–27776 (2018)
Hu, M., Feng, X., Ji, Z., et al.: A novel computational approach for discord search with local recurrence rates in multivariate time series[J]. Information Sciences. 477, 220–233 (2019)
Ji, Z., Wang, B., Deng, S.P., et al.: Predicting dynamic deformation of retaining structure by LSSVR-based time series method[J]. Neurocomputing. 137, 165–172 (2014)
Jin, N., Wu, J., Ma, X., et al.: Multi-task learning model based on multi-scale CNN and LSTM for sentiment classification[J]. IEEE Access. 8, 77060–77072 (2020)
Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences[J]. arXiv preprint arXiv:1404.2188 (2014)
Karpathy, A., Toderici, G., Shetty, S., et al.: Large-scale video classification with convolutional neural networks[C]//Proceedings of the IEEE conference on Computer Vision and Pattern Recognition. 1725-1732 (2014)
Kelt, J.: Search before the purchase: Understanding buyer search activity as it builds to online purchase[J]. DoubleClick, February (2005)
Kim, Y.: Convolutional neural networks for sentence classification [C]. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 1746-1751. (2014) https://doi.org/10.3115/v1/D14-181
Konečný, J., McMahan, H. B., Yu, F.X., et al.: Federated learning: Strategies for improving communication efficiency[J]. arXiv preprint arXiv:1610.05492, (2016)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems. 25, 1097–1105 (2012)
Li, M., Andersen, D. G., Park, J. W., et al.: Scaling distributed machine learning with the parameter server[C]//11th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 14). 583-598 (2014)
Li, T., Sanjabi, M., Beirami, A., et al.: Fair resource allocation in federated learning[J]. arXiv preprint arXiv:1905.10497 (2019)
Liang, W., Hu, Y., Zhou, X., et al.: Variational Few-Shot Learning for Microservice-Oriented Intrusion Detection in Distributed Industrial IoT[J]. IEEE Transactions on Industrial Informatics. (2021)
Lin, Y., Han, S., Mao, H., et al.: Deep gradient compression: Reducing the communication bandwidth for distributed training[J]. arXiv preprint arXiv:1712.01887 (2017)
Liu, Y., Pei, A., Wang, F., et al.: An attention-based category-aware GRU model for the next POI recommendation[J]. International Journal of Intelligent Systems. (2021)
Mabrouki, J., Azrour, M., Fattah, G., et al.: Intelligent monitoring system for biogas detection based on the internet of things: Mohammedia, morocco city landfill case[J]. Big Data Mining and Analytics. 4(1), 10–17 (2021)
Mahmud, M.S., Huang, J.Z., Salloum, S., et al.: A survey of data partitioning and sampling methods to support big data analysis[J]. Big Data Mining and Analytics. 3(2), 85–101 (2020)
Malek, Y.N., Najib, M., Bakhouya, M., et al.: Multivariate deep learning approach for electric vehicle speed forecasting[J]. Big Data Mining and Analytics. 4(1), 56–64 (2021)
Mao, Y., You, C., Zhang, J., et al.: A survey on mobile edge computing: The communication perspective[J]. IEEE Communications Surveys & Tutorials. 19(4), 2322–2358 (2017)
McMahan, H. B., Moore, E., Ramage, D., et al.: Federated learning of deep networks using model averaging[J]. arXiv preprint arXiv:1602.05629, (2016)
McMahan, B., Moore, E., Ramage, D., et al.: Communication-efficient learning of deep networks from decentralized data[C]//Artificial intelligence and statistics. PMLR. 1273–1282 (2017)
Niu, F., Recht, B., Ré, C., et al.: Hogwild!: A lock-free approach to parallelizing stochastic gradient descent[J]. arXiv preprint arXiv:1106.5730 (2011)
O'Connor, B., Balasubramanyan, R., Routledge, B. R., et al.: From tweets to polls: Linking text sentiment to public opinion time series[C]//Fourth international AAAI conference on weblogs and social media. (2010)
Pang, B., Lee, L.: Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales[J]. arXiv preprint cs/0506075 (2005)
Peters, M., Neumannm, M., Iyyer, M., et al.: Deep Contextualized Word Representations[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers). (2018)
Qi, L., Wang, X., Xu, X., et al.: Privacy-aware cross-platform service recommendation based on enhanced locality-sensitive hashing[J]. IEEE Transactions on Network Science and Engineering. (2020)
Qi, L., Hu, C., Zhang, X., et al.: Privacy-aware data fusion and prediction with spatial-temporal context for smart city industrial environment[J]. IEEE Transactions on Industrial Informatics. 17(6), 4159–4167 (2020)
Qiu, M., Dai, H.N., Sangaiah, A.K., et al.: Guest editorial: Special section on emerging privacy and security issues brought by artificial intelligence in industrial informatics[J]. IEEE Transactions on Industrial Informatics. 16(3), 2029–2030 (2019)
Radford, A., Narasimhan, K., Salimans, T., et al.: Improving language understanding by generative pre-training[J]. (2018)
Rakhlin, A.: Convolutional neural networks for sentence classification[J]. GitHub, (2016)
Rehak, D., Dodds, P., Lannom, L.: A model and infrastructure for federated learning content repositories[C]//Interoperability of web-based educational systems workshop. 143 (2005)
Satyanarayanan, M.: The emergence of edge computing[J]. Computer. 50(1), 30–39 (2017)
Shakarami, A., Ghobaei-Arani, M., Shahidinejad, A.: A survey on the computation offloading approaches in mobile edge computing: A machine learning-based perspective[J]. Computer Networks. 107496, (2020)
Shi, W., Cao, J., Zhang, Q., et al.: Edge computing: Vision and challenges[J]. IEEE internet of things journal. 3(5), 637–646 (2016)
Tan, X., Zhang, J., Zhang, Y., et al.: A PUF-based and cloud-assisted lightweight authentication for multi-hop body area network[J]. Tsinghua Science and Technology. 26(1), 36–47 (2020)
Wang, F., Zhu, H., Srivastava, G., et al.: Robust collaborative filtering recommendation with user-item-trust records[J]. IEEE Transactions on Computational Social Systems. (2021)
Wei, X., Lin, H., Yu, Y., et al.: Low-resource cross-domain product review sentiment classification based on a CNN with an auxiliary large-scale corpus[J]. Algorithms. 10(3), 81 (2017)
Xu, Z.W.: Cloud-Sea Computing Systems: Towards Thousand-Fold Improvement in Performance per Watt for the Coming Zettabyte Era[J]. Journal of Computer Science and Technology. 029(002), 177–181 (2014)
Xu, Y., Zhang, C., Zeng, Q., et al.: Blockchain-enabled accountability mechanism against information leakage in vertical industry services[J]. IEEE Transactions on Network Science and Engineering. (2020)
Yan, K., Shen, W., Jin, Q., et al.: Emerging privacy issues and solutions in cyber-enabled sharing services: From multiple perspectives[J]. IEEE Access. 7, 26031–26059 (2019)
Yuan, Y., Huang, J., Yan, K.: Virtual Reality Therapy and Machine Learning Techniques in Drug Addiction Treatment[C]//2019 10th International Conference on Information Technology in Medicine and Education (ITME). IEEE. 241–245 (2019)
Yuan, Y., Huang, J., Ma, X., et al.: Children's Drawing Psychological Analysis using Shallow Convolutional Neural Network[C]//2020 International Conferences on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). IEEE. 692–698 (2020)
Zhang, X., Dou, W., He, Q., et al.: LSHiForest: A generic framework for fast tree isolation based ensemble anomaly analysis[C]//2017 IEEE 33rd International Conference on Data Engineering (ICDE). IEEE, 983-994 (2017)
Zhang, W., Chen, X., Jiang, J.: A multi-objective optimization method of initial virtual machine fault-tolerant placement for star topological data centers of cloud systems[J]. Tsinghua Science and Technology. 26(1), 95–111 (2020)
Zhang, J., Yan, K., Mo, Y.: Multi-Task Learning for Sentiment Analysis with Hard-Sharing and Task Recognition Mechanisms[J]. Information. 12(5), 207 (2021)
Zhang, C., Xu, Y., Hu, Y., et al.: A blockchain-based multi-cloud storage data auditing scheme to locate faults[J]. IEEE Transactions on Cloud Computing. (2021)
Zhou, X., Liang, W., Kevin, I., et al.: Academic influence aware and multidimensional network analysis for research collaboration navigation based on scholarly big data[J]. IEEE Transactions on Emerging Topics in Computing. (2018)
Zhou, X., Xu, X., Liang, W., et al.: Deep Learning Enhanced Multi-Target Detection for End-Edge-Cloud Surveillance in Smart IoT[J]. IEEE Internet of Things Journal. (2021)
Zhou, X., Xu, X., Liang, W., et al.: Intelligent small object detection based on digital twinning for smart manufacturing in industrial CPS[J]. IEEE Transactions on Industrial Informatics. (2021)
Zhou, X., Yang, X., Ma, J., et al.: Energy Efficient Smart Routing Based on Link Correlation Mining for Wireless Edge Computing in IoT[J]. IEEE Internet of Things Journal. (2021)
Zonglin, L.I.U., Meishan, Z., Ranran, Z., et al.: Multi-task learning model for legal judgment predictions with charge keywords[J]. Journal of Tsinghua University (Science and Technology). 59(7), 497–504 (2019)
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflicts of interests
The authors declare that they have no competing interests.
Additional information
This article belongs to Topical Collection: Special Issue on Resource Management at the Edge for Future Web, Mobile, and IoT Applications
Guest Editors: Qiang He, Fang Dong, Chenshu Wu, and Yun Yang
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Xiong, G., Yan, K. & Zhou, X. A distributed learning based sentiment analysis methods with Web applications. World Wide Web 25, 1905–1922 (2022). https://doi.org/10.1007/s11280-021-00994-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11280-021-00994-0