Abstract
This paper is a review about endocrine disruptor’s detection in water. In order to monitor these pollutants, there are some methods for detection such as chromatographic, immunoassays, enzymatic biosensors, immunosensors, aptamers sensors, biosensors, and cantilever nanobiosensors. The last ones are versatility devices, which present low detection limit values, high sensitivity and selectivity, and real-time response. Among the various types of biosensors, those based on cantilevers have demonstrated interesting results in detecting specific substances, especially endocrine disruptors such as 17 β-estradiol, 17 α-ethynylestradiol, estriol, and estrone in water.
Graphical abstract
Similar content being viewed by others
References
Adeel, M., Song, X., Wang, Y., Francis, D., & Yang, Y. (2017). Environmental impact of estrogens on human, animal and plant life: A critical review. Environment International, 99, 107–119. https://doi.org/10.1016/j.envint.2016.12.010
Akki, S. U., Werth, C. J., & Silverman, S. K. (2015). Selective aptamers for detection of estradiol and ethynylestradiol in natural waters. Environmental Science & Technology, 49(16), 9905–9913. https://doi.org/10.1021/acs.est.5b02401
Alunda, B. O., & Lee, Y. J. (2020). Review: Cantilever-based sensors for high speed atomic force microscopy. Sensors, 20(17), 4784. https://doi.org/10.3390/s20174784
Alvarez, M., Zinoviev, K., Moreno, M., & Lechuga, L. M. (2008). Cantilever biosensors. In Optical Biosensors (pp. 419–452). Elsevier. https://doi.org/10.1016/B978-044453125-4.50012-7
Andrade-Eiroa, A., Canle, M., Leroy-Cancellieri, V., & Cerdà, V. (2016). Solid-phase extraction of organic compounds: A critical review. part ii. TrAC Trends in Analytical Chemistry, 80, 655–667. https://doi.org/10.1016/j.trac.2015.08.014
Andrade, M. A., Rodrigues, L. F., Ierich, J. C. M., Melendez, M. E., Carvalho, A. L., de Carvalho, A. C., et al. (2019). A nanomechanical genosensor using functionalized cantilevers to detect the cancer biomarkers miRNA-203 and miRNA-205.IEEE Sensors Journal, 1–1. https://doi.org/10.1109/JSEN.2019.2948506
Apetrei, I., & Apetrei, C. (2019). Development of a novel biosensor based on tyrosinase/platinum nanoparticles/chitosan/graphene nanostructured layer with applicability in bioanalysis. Materials, 12, 1009. https://doi.org/10.3390/ma12071009
Arntz, Y., Seelig, J. D., Lang, H. P., Zhang, J., Hunziker, P., Ramseyer, J. P., et al. (2003). Label-free protein assay based on a nanomechanical cantilever array. Nanotechnology, 14(1), 86–90. https://doi.org/10.1088/0957-4484/14/1/319
Ballen, S. C., Steffens, J., & Steffens, C. (2021a). Stability characteristics of cantilever nanobiosensors with simple and complex molecules for determination of cadmium. Sensors and Actuators a: Physical, 324(15), 112686. https://doi.org/10.1016/j.sna.2021.112686
Ballen, S. C., Ostrowski, G. M., Steffens, J., & Steffens, C. (2021b). Graphene oxide/urease nanobiosensor applied for cadmium detection in river water. Ieee Sensors, 21(8), 9626–9633. https://doi.org/10.1109/JSEN.2021.3056042
Baró, A. M., & Reifenberger, R. G. (2012). Atomic force microscopy in liquid. (A. M. Baró & R. G. Reifenberger, Eds.) Atomic Force Microscopy in Liquid: Biological Applications. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/9783527649808
Barrios-Estrada, C., de Jesús Rostro-Alanis, M., Muñoz-Gutiérrez, B. D., Iqbal, H. M. N., Kannan, S., & Parra-Saldívar, R. (2018). Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation – A review. Science of the Total Environment, 612, 1516–1531. https://doi.org/10.1016/j.scitotenv.2017.09.013
Bergman, Å., Heindel, J., Jobling, S., Kidd, K., & Zoeller, R. T. (2012). State-of-the-science of endocrine disrupting chemicals, 2012. Toxicology Letters, 211, S3. https://doi.org/10.1016/j.toxlet.2012.03.020
Birnbaum, L. S. (2013). State of the science of endocrine disruptors. Environmental Health Perspectives, 121, 4. https://doi.org/10.1289/ehp.1306695
Bongrain, A., Scorsone, E., Rousseau, L., Lissorgues, G., & Bergonzo, P. (2011). Realisation and characterisation of mass-based diamond micro-transducers working in dynamic mode. Sensors and Actuators B: Chemical, 154(2), 142–149. https://doi.org/10.1016/j.snb.2009.12.067
Brasil. Conselho Nacional do Meio Ambiente-CONAMA. Resolução n° 430, de 13 de Maio de 2011. Diário Oficial da União (2011). http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=646
Brazaca, L. C., Janegitz, B. C., Cancino-Bernardi, J., & Zucolotto, V. (2016). Transmembrane protein-based electrochemical biosensor for adiponectin hormone quantification. ChemElectroChem, 3(6), 1006–1011. https://doi.org/10.1002/celc.201600099
Brezolin, A. N., Martinazzo, J., Steffens, J., & Steffens, C. (2020). Polyaniline–graphene oxide nanocomposite microelectromechanical sensor for stink bugs pheromone detection. Sensors and Actuators B: Chemical, 305, 127426. https://doi.org/10.1016/j.snb.2019.127426
Brezolin, A. N., Martinazzo, J., Blassioli-Moraes, M. C., Manzoli, A., Steffens, J., & Steffens, C. (2019). Highly sensitive sensor for trace level detection of Euschistus heros pheromone. Industrial Biotechnology, 15(6), 357–364. https://doi.org/10.1089/ind.2019.0020
Brezolin, A. N., Martinazzo, J., Muenchen, D. K., de Cezaro, A. M., Rigo, A. A., Steffens, C., et al. (2018). Tools for detecting insect semiochemicals: A review. Analytical and Bioanalytical Chemistry, 410(17), 4091–4108. https://doi.org/10.1007/s00216-018-1118-3
Buchapudi, K. R., Huang, X., Yang, X., Ji, H.-F., & Thundat, T. (2011). Microcantilever biosensors for chemicals and bioorganisms. The Analyst, 136(8), 1539. https://doi.org/10.1039/c0an01007c
Bueno, C. C., Garcia, P. S., Steffens, C., Deda, D. K., & Leite, F. L. (2017b). Nanosensors. In Nanoscience and its Applications (pp. 121–153). Elsevier. https://doi.org/10.1016/B978-0-323-49780-0.00005-3
Carrascosa, L. G., Moreno, M., Álvarez, M., & Lechuga, L. M. (2006). Nanomechanical biosensors: A new sensing tool. TrAC Trends in Analytical Chemistry, 25(3), 196–206. https://doi.org/10.1016/j.trac.2005.09.006
Cezaro, A. M., Rigo, A. A., Martinazzo, J., Muenchen, D. K., Brezolin, A. N., Manzoli, A., et al. (2020). Development of cantilever nanoimmunosensors applied to the detection of b-estradiol and estrone in water. IEEE Sensors Journal, 1. https://doi.org/10.1109/JSEN.2020.3000582
Cezaro, A. M., Rigo, A. A., Martinazzo, J., Muenchen, D. K., Manzoli, A., Correa, D. S., et al. (2020). Cantilever nanobiosensor functionalized with tyrosinase for detection of estrone and β-estradiol in water. Applied Biochemistry and Biotechnology, 190(4), 1512–1524. https://doi.org/10.1007/s12010-019-03195-8
Chavoshani, A., Hashemi, M., Amin, M.M., & Ameta, S.C. (2020) Chapter 1 - Introduction, In Micropollutants and Challenges, Elsevier, 1–33, https://doi.org/10.1016/B978-0-12-818612-1.00001-5.
Cristea, C., Florea, A., Tertis, M., & Sandulescu, R. (2015). Immunosensors. In Biosensors - Micro and Nanoscale Applications. InTech. https://doi.org/10.5772/60524
Cubillas, P., Etherington, K., Anderson, M. W., & Attfield, M. P. (2014). Crystal growth of MOF-5 using secondary building units studied by in situ atomic force microscopy. CrystEngComm, 16(42), 9834–9841. https://doi.org/10.1039/C4CE01710B
Dai, Y., & Liu, C. (2017). Detection of 17 β-estradiol in environmental samples and for health care using a single-use, cost-effective biosensor based on differential pulse voltammetry (DPV). Biosensors, 7(4), 15. https://doi.org/10.3390/bios7020015
Daverey, A., Dutta, K., & Sarkar, A. (2019). An overview of analytical methodologies for environmental monitoring. In Tools, Techniques and Protocols for Monitoring Environmental Contaminants (pp. 3–17). Elsevier. https://doi.org/10.1016/B978-0-12-814679-8.00001-7
Deda, D. K., Pereira, B. B. S., Bueno, C. C., da Silva, A. N., Ribeiro, G. A., Amarante, A. M., et al. (2013). The use of functionalized AFM tips as molecular sensors in the detection of pesticides. Materials Research, 16(3), 683–687. https://doi.org/10.1590/S1516-14392013005000043
Dirtu, A. C., Van den Eede, N., Malarvannan, G., Ionas, A. C., & Covaci, A. (2012). Analytical methods for selected emerging contaminants in human matrices—A review. Analytical and Bioanalytical Chemistry, 404(9), 2555–2581. https://doi.org/10.1007/s00216-012-6053-0
Dutta, P., Hill, K., Datskos, P. G., & Sepaniak, M. J. (2007). Development of a nanomechanical biosensor for analysis of endocrine disrupting chemicals. Lab on a Chip, 7(9), 1184. https://doi.org/10.1039/b704723a
Ejeian, F., Etedali, P., Mansouri-Tehrani, H.-A., Soozanipour, A., Low, Z.-X., Asadnia, M., et al. (2018). Biosensors for wastewater monitoring: A review. Biosensors and Bioelectronics, 118, 66–79. https://doi.org/10.1016/j.bios.2018.07.019
EPA. (2019). What are concerns regarding endocrine disruptors? United States Environmental Protection Agency. https://www.epa.gov/endocrine-disruption/what-endocrine-disruption. Accessed 9 September 2019
European Commission. (2012). Directive of the European parliament and of the council amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy, COM (2011.
Fan, L., Zhao, G., Shi, H., Liu, M., Wang, Y., & Ke, H. (2014). A femtomolar level and highly selective 17β-estradiol photoelectrochemical aptasensor applied in environmental water samples analysis. Environmental Science & Technology, 48(10), 5754–5761. https://doi.org/10.1021/es405685y
Fukuma, T. (2009). Wideband low-noise optical beam deflection sensor with photothermal excitation for liquid-environment atomic force microscopy. Review of Scientific Instruments, 80(2), 023707. https://doi.org/10.1063/1.3086418
Furst, A. L., Hoepker, A. C., & Francis, M. B. (2017). Quantifying hormone disruptors with an engineered bacterial biosensor. ACS Central Science, 3(2), 110–116. https://doi.org/10.1021/acscentsci.6b00322
Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., van der Ploeg, M., et al. (2015). Emerging pollutants in the environment: A challenge for water resource management. International Soil and Water Conservation Research, 3(1), 57–65. https://doi.org/10.1016/j.iswcr.2015.03.002
Gimiliani, G. T., Fontes, R. F. C., & de Souza Abessa, D. M. (2016). Modeling the dispersion of endocrine disruptors in the Santos estuarine system (Sao Paulo State, Brazil). Brazilian Journal of Oceanography, 64(1), 1–8. https://doi.org/10.1590/S1679-87592016072806401
Graboski, A. M., Martinazzo, J., Ballen, S. C., Steffens, J., & Steffens, C. (2020). Nanosensors for water quality control. In A. Amrane, S. Rajendran, T. A. Nguyen, A. A. Assadi, & A. M. Sharoba (Eds.), Nanotechnology in the Beverage Industry Fundamentals and Applications (1st ed., p. 744). Netherlands: Elsevier. https://doi.org/10.1016/B978-0-12-819941-1.00004-3
Grover, D. P., Zhang, Z. L., Readman, J. W., & Zhou, J. L. (2009). A comparison of three analytical techniques for the measurement of steroidal estrogens in environmental water samples. Talanta, 78(3), 1204–1210. https://doi.org/10.1016/j.talanta.2008.12.049
Grześkowiak, T., Czarczyńska-Goślińska, B., & Zgoła-Grześkowiak, A. (2018). Biodegradation of selected endocrine disrupting compounds. Methods in Pharmacology and Toxicology, 1, 27. https://doi.org/10.1007/978-1-4939-7425-2_1
Guedesmaniero, M., Maiabila, D., & Dezotti, M. (2008). Degradation and estrogenic activity removal of 17β-estradiol and 17α-ethinylestradiol by ozonation and O3/H2O2. Science of the Total Environment, 407(1), 105–115. https://doi.org/10.1016/j.scitotenv.2008.08.011
Hamid, H., & Eskicioglu, C. (2012). Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix. Water Research, 46(18), 5813–5833. https://doi.org/10.1016/j.watres.2012.08.002
Hansen, K. M., & Thundat, T. (2005). Microcantilever biosensors. Methods, 37(1), 57–64. https://doi.org/10.1016/J.YMETH.2005.05.011
Jiang, K., Wang, Y., Thakur, G., Kotsuchibashi, Y., Naicker, S., Narain, R., & Thundat, T. (2017). Rapid and highly sensitive detection of dopamine using conjugated oxaborole-based polymer and glycopolymer systems. ACS Applied Materials & Interfaces, 9(18), 15225–15231. https://doi.org/10.1021/acsami.7b04178
Jodar, L. V., Santos, F. A., Zucolotto, V., & Janegitz, B. C. (2018). Electrochemical sensor for estriol hormone detection in biological and environmental samples. Journal of Solid State Electrochemistry, 22(5), 1431–1438. https://doi.org/10.1007/s10008-017-3726-9
Johnson, B. N., & Mutharasan, R. (2012). Biosensing using dynamic-mode cantilever sensors: A review. Biosensors and Bioelectronics, 32(1), 1–18. https://doi.org/10.1016/j.bios.2011.10.054
Justino, C., Duarte, A., & Rocha-Santos, T. (2017). Recent progress in biosensors for environmental monitoring: A review. Sensors, 17(12), 2918. https://doi.org/10.3390/s17122918
Kaleniecka, A., & Zarzycki, P. (2019). Analysis of selected endocrine disrupters fraction including bisphenols extracted from daily products, food packaging and treated wastewater using optimized solid-phase extraction and temperature-dependent inclusion chromatography. Molecules, 24(7), 1285. https://doi.org/10.3390/molecules24071285
Karim, F., & Fakhruddin, A. N. M. (2012). Recent advances in the development of biosensor for phenol: a review. Reviews in Environmental Science and Bio/technology, 11(3), 261–274. https://doi.org/10.1007/s11157-012-9268-9
Kawamura, A., & Miyata, T. (2016). 4.2 Biosensors. Biomaterials Nanoarchitectonics, 358. https://doi.org/10.1016/B978-0-323-37127-8/00010-8
Koev, S. T., Bentley, W. E., & Ghodssi, R. (2010). Interferometric readout of multiple cantilever sensors in liquid samples. Sensors and Actuators B: Chemical, 146(1), 245–252. https://doi.org/10.1016/j.snb.2010.02.038
Koho, J. (2014). Membrane-type surface stress sensor having antibody or antigen immobilized thereon, method for producing same, and immunoassay method using same. https://patents.google.com/patent/JPWO2014196606A1/en
Kostich, M., Flick, R., & Martinson, J. (2013). Comparing predicted estrogen concentrations with measurements in US waters. Environmental Pollution, 178, 271–277. https://doi.org/10.1016/j.envpol.2013.03.024
Kozlowska-Tylingo, K., Namieśnik, J., & Górecki, T. (2010). Determination of estrogenic endocrine disruptors in environmental samples—A review of chromatographic methods. Critical Reviews in Analytical Chemistry, 40(3), 194–201. https://doi.org/10.1080/10408347.2010.490488
Kudanga, T., Nyanhongo, G. S., Guebitz, G. M., & Burton, S. (2011). Potential applications of laccase-mediated coupling and grafting reactions: A review. Enzyme and Microbial Technology, 48(3), 195–208. https://doi.org/10.1016/j.enzmictec.2010.11.007
LaFleur, A. D., & Schug, K. A. (2011). A review of separation methods for the determination of estrogens and plastics-derived estrogen mimics from aqueous systems. Analytica Chimica Acta, 696(1–2), 6–26. https://doi.org/10.1016/j.aca.2011.03.054
Lang, H. P., Hegner, M., & Gerber, C. (2010). Nanomechanical cantilever array sensors. In B. Bhushan (Ed.), Springer Handbook of Nanotechnology (pp. 427–452). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_15
Lavrik, N. V., Sepaniak, M. J., & Datskos, P. G. (2004). Cantilever transducers as a platform for chemical and biological sensors. Review of Scientific Instruments, 75(7), 2229–2253. https://doi.org/10.1063/1.1763252
Liu, J., Bai, W., Niu, S., Zhu, C., Yang, S., & Chen, A. (2015). Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Scientific Reports, 4(1), 7571. https://doi.org/10.1038/srep07571
Liu, S., Cheng, R., Chen, Y., Shi, H., & Zhao, G. (2018). A simple one-step pretreatment, highly sensitive and selective sensing of 17β-estradiol in environmental water samples using surface-enhanced Raman spectroscopy. Sensors and Actuators B: Chemical, 254, 1157–1164. https://doi.org/10.1016/j.snb.2017.08.003
Lopardo, L., Rydevik, A., & Kasprzyk-Hordern, B. (2019). A new analytical framework for multi-residue analysis of chemically diverse endocrine disruptors in complex environmental matrices utilising ultra-performance liquid chromatography coupled with high-resolution tandem quadrupole time-of-flight mass spectro. Analytical and Bioanalytical Chemistry, 411(3), 689–704. https://doi.org/10.1007/s00216-018-1483-y
Machado, K. S., Cardoso, F. D., Azevedo, J. C. R., & Braga, C. B. (2014). Occurrence of female sexual hormones in the Iguazu river basin, Curitiba, Paraná State Brazil. Acta Scientiarum Technology, 36(3), 421. https://doi.org/10.4025/actascitechnol.v36i3.18477
Manickum, T., & John, W. (2015). The current preference for the immuno-analytical ELISA method for quantitation of steroid hormones (endocrine disruptor compounds) in wastewater in South Africa. Analytical and Bioanalytical Chemistry, 407(17), 4949–4970. https://doi.org/10.1007/s00216-015-8546-0
Manzoli, A., Steffens, C., Paschoalin, R. T., Oliveira, J. E., Mattoso, H. L. C., & Herrmann, P. S. P. (2010). Funcionalização da superfície de microcantilevers utilizados em microscopia de força atômica com biomoléculas. Circular Técnica, 53, 1–6.
Martinazzo, J., Brezolin, A. N., Steffens, C., & Steffens, J. (2020). Detection of pesticides using cantilever nanobiosensors. In 21st Century Nanoscience – A Handbook (pp. 17–1–17–10). Boca Raton, Florida : CRC Press, [2020]: CRC Press. https://doi.org/10.1201/9780429351587-17
Martinazzo, J., Muenchen, D. K., Brezolin, A. N., Cezaro, A. M., Rigo, A. A., Manzoli, A., et al. (2018). Cantilever nanobiosensor using tyrosinase to detect atrazine in liquid medium. Journal of Environmental Science and Health, Part B, 53(4), 229–236. https://doi.org/10.1080/03601234.2017.1421833
Matoba, Y., Kihara, S., Bando, N., Yoshitsu, H., Sakaguchi, M., Kayama, K., et al. (2019). Catalytic mechanism of the tyrosinase reaction toward the Tyr98 residue in the caddie protein. PLOS Biology, 16(12), 1–22. https://doi.org/10.1371/journal.pbio.3000077
Monerri, M. J., D´Eramo, F., Arévalo, F. J., Fernández, H., Zon, M. A., & Molina, P. G. (2016). Electrochemical immunosensor based on gold nanoparticles deposited on a conductive polymer to determine estrone in water samples. Microchemical Journal, 129, 71–77. https://doi.org/10.1016/j.microc.2016.06.001
Moraes, F. C., Rossi, B., Donatoni, M. C., de Oliveira, K. T., & Pereira, E. C. (2015). Sensitive determination of 17β-estradiol in river water using a graphene based electrochemical sensor. Analytica Chimica Acta, 881, 37–43. https://doi.org/10.1016/j.aca.2015.04.043
Moreira, D. S., Aquino, S. F., Afonso, R. J. C. F., Santos, E. P. P. C., & de Pádua, V. L. (2009). Occurrence of endocrine disrupting compounds in water sources of Belo Horizonte Metropolitan Area Brazil. Environmental Technology, 30(10), 1041–1049. https://doi.org/10.1080/09593330903052830
Moreira, M., Aquino, S., Coutrim, M., Silva, J., & Afonso, R. (2011). Determination of endocrine-disrupting compounds in waters from Rio das Velhas, Brazil, by liquid chromatography/high resolution mass spectrometry (ESI-LC-IT-TOF/MS). Environmental Technology, 32(12), 1409–1417. https://doi.org/10.1080/09593330.2010.537829
Muenchen, D. K., Martinazzo, J., Brezolin, A. N., de Cezaro, A. M., Rigo, A. A., Mezarroba, M. N., et al. (2018). Cantilever functionalization using peroxidase extract of low cost for glyphosate detection. Applied Biochemistry and Biotechnology, 186(4), 1061–1073. https://doi.org/10.1007/s12010-018-2799-y
Muenchen, D. K., Martinazzo, J., de Cezaro, A. M., Rigo, A. A., Brezolin, A. N., Manzoli, A., et al. (2016). Pesticide detection in soil using biosensors and nanobiosensors. Biointerface Research in Applied Chemistry, 6(6), 1659–1675.
Mukhopadhyay, R., Sumbayev, V. V., Lorentzen, M., Kjems, J., Andreasen, P. A., & Besenbacher, F. (2005). Cantilever sensor for nanomechanical detection of specific protein conformations. Nano Letters, 5(12), 2385–2388. https://doi.org/10.1021/nl051449z
Nameghi, M. A., Danesh, N. M., Ramezani, M., Alibolandi, M., Abnous, K., & Taghdisi, S. M. (2019). An ultrasensitive electrochemical sensor for 17β-estradiol using split aptamers. Analytica Chimica Acta, 1065, 107–112. https://doi.org/10.1016/j.aca.2019.02.062
Nazari, M., Kashanian, S., & Rafipour, R. (2015). Laccase immobilization on the electrode surface to design a biosensor for the detection of phenolic compound such as catechol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 145, 130–138. https://doi.org/10.1016/j.saa.2015.01.126
Nguyen, H. H., Lee, S. H., Lee, U. J., Fermin, C. D., & Kim, M. (2019). Immobilized enzymes in biosensor applications. Materials (basel, Switzerland), 12(1), 121. https://doi.org/10.3390/ma12010121
Niemuth, N. J., Jordan, R., Crago, J., Blanksma, C., Johnson, R., & Klaper, R. D. (2015). Metformin exposure at environmentally relevant concentrations causes potential endocrine disruption in adult male fish. Environmental Toxicology and Chemistry, 34(2), 291–296. https://doi.org/10.1002/etc.2793
Nikolaou, A., Meric, S., & Fatta, D. (2007). Occurrence patterns of pharmaceuticals in water and wastewater environments. Analytical and Bioanalytical Chemistry, 387(4), 1225–1234. https://doi.org/10.1007/s00216-006-1035-8
Notsu, H., Tatsuma, T., & Fujishima, A. (2002). Tyrosinase-modified boron-doped diamond electrodes for the determination of phenol derivatives. Journal of Electroanalytical Chemistry, 523(1–2), 86–92. https://doi.org/10.1016/S0022-0728(02)00733-7
Pal, A., Gin, K.Y.-H., Lin, A.Y.-C., & Reinhard, M. (2010). Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of the Total Environment, 408(24), 6062–6069. https://doi.org/10.1016/j.scitotenv.2010.09.026
Parliament, E. (2019). Endocrine disruptors: From scientific evidence to human health protection. EU Publications. https://doi.org/10.2861/802173
Pu, H., Xie, X., Sun, D.-W., Wei, Q., & Jiang, Y. (2019). Double strand DNA functionalized Au@Ag Nps for ultrasensitive detection of 17β-estradiol using surface-enhanced raman spectroscopy. Talanta, 195, 419–425. https://doi.org/10.1016/j.talanta.2018.10.021
Quesada, H. B., Baptista, A. T. A., Cusioli, L. F., Seibert, D., de Oliveira Bezerra, C., & Bergamasco, R. (2019). Surface water pollution by pharmaceuticals and an alternative of removal by low-cost adsorbents: A review. Chemosphere, 222, 766–780. https://doi.org/10.1016/j.chemosphere.2019.02.009
Ricciardi, C., Ferrante, I., Castagna, R., Frascella, F., Marasso, S. L., Santoro, K., et al. (2013). Immunodetection of 17β-estradiol in serum at ppt level by microcantilever resonators. Biosensors and Bioelectronics, 40(1), 407–411. https://doi.org/10.1016/j.bios.2012.08.043
Rigo, A. A., Cezaro, A. M., Martinazzo, J., Ballen, S., Hoehne, L., Steffens, J., & Steffens, C. (2020). Detection of lead in river water samples applying cantilever nanobiosensor. Water, Air, & Soil Pollution, 231(4), 186. https://doi.org/10.1007/s11270-020-04562-6
Rigo, A. A., Cezaro, A. M., Muenchen, D. K., Martinazzo, J., Brezolin, A. N., Hoehne, L., et al. (2019). Cantilever nanobiosensor based on the enzyme urease for detection of heavy metals. Brazilian Journal of Chemical Engineering, 36(04), 1429–1437.
Rigo, A. A., Cezaro, A. M., Muenchen, D. K., Martinazzo, J., Manzoli, A., Steffens, J., & Steffens, C. (2019). Heavy metals detection in river water with cantilever nanobiosensor. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes, 55(3), 239–249. https://doi.org/10.1080/03601234.2019.1685318
Rodrigues, L. F., Ierich, J. C. M., Andrade, M. A., Hausen, M. A., Leite, F. L., Moreau, A. L. D., & Steffens, C. (2017). Nanomechanical cantilever-based sensor: An efficient tool to measure the binding between the herbicide mesotrione and 4-hydroxyphenylpyruvate dioxygenase. NANO, 12(07), 1750079. https://doi.org/10.1142/S1793292017500795
Rodríguez-Delgado, M. M., Alemán-Nava, G. S., Rodríguez-Delgado, J. M., Dieck-Assad, G., Martínez-Chapa, S. O., Barceló, D., & Parra, R. (2015). Laccase-based biosensors for detection of phenolic compounds. TrAC Trends in Analytical Chemistry, 74, 21–45. https://doi.org/10.1016/j.trac.2015.05.008
Scala-Benuzzi, M. L., Takara, E. A., Alderete, M., Soler-Illia, G. J. A. A., Schneider, R. J., Raba, J., & Messina, G. A. (2018). Ethinylestradiol quantification in drinking water sources using a fluorescent paper based immunosensor. Microchemical Journal., 141, 287–293. https://doi.org/10.1016/j.microc.2018.05.038
Schmid, S., Kurek, M., Adolphsen, J. Q., & Boisen, A. (2013). Real-time single airborne nanoparticle detection with nanomechanical resonant filter-fiber. Scientific Reports, 3(1), 1288. https://doi.org/10.1038/srep01288
Shaik, N. H., Reifenberger, R. G., & Raman, A. (2014). Microcantilevers with embedded accelerometers for dynamic atomic force microscopy. Applied Physics Letters, 104(8), 083109. https://doi.org/10.1063/1.4866664
Shore, L. S., & Shemesh, M. (2016). Estrogen as an environmental pollutant. Bulletin of Environmental Contamination and Toxicology, 97(4), 447–448. https://doi.org/10.1007/s00128-016-1873-9
Silva, C. P., Lima, D. L. D., Schneider, R. J., Otero, M., & Esteves, V. I. (2013). Development of ELISA methodologies for the direct determination of 17β-estradiol and 17α-ethinylestradiol in complex aqueous matrices. Journal of Environmental Management, 124, 121–127. https://doi.org/10.1016/j.jenvman.2013.03.041
Singh, A. C., Asif, M. H., Bacher, G., Danielsson, B., Willander, M., & Bhand, S. (2019). Nanoimmunosensor based on ZnO nanorods for ultrasensitive detection of 17β-Estradiol. Biosensors and Bioelectronics, 126, 15–22. https://doi.org/10.1016/j.bios.2018.10.004
Singh, A. C., Bacher, G., & Bhand, S. (2017). A label free immunosensor for ultrasensitive detection of 17β-Estradiol in water. Electrochimica Acta, 232, 30–37. https://doi.org/10.1016/j.electacta.2017.02.120
Steffens, C., Corazza, M. L., Franceschi, E., Castilhos, F., Herrmann, P. S. P., & Oliveira, J. V. (2012). Development of gas sensors coatings by polyaniline using pressurized fluid. Sensors and Actuators, B: Chemical, 171–172, 627–633. https://doi.org/10.1016/j.snb.2012.05.044
Steffens, C., Leite, F. L., Bueno, C. C., Manzoli, A., & Herrmann, P. S. P. (2012). atomic force microscopy as a tool applied to Nano/Biosensors. Sensors, 12(6), 8278–8300. https://doi.org/10.3390/s120608278
Steffens, C., Leite, F. L., Manzoli, A., Sandoval, R. D., Fatibello, O., & Herrmann, P. S. P. (2014). Microcantilever sensors coated with a sensitive polyaniline layer for detecting volatile organic compounds. Journal of Nanoscience and Nanotechnology, 14, 9. https://doi.org/10.1166/jnn.2014.9348
Steffens, C., Manzoli, A., Oliveira, J. E., Leite, F. L., Correa, D. S., & Herrmann, P. S. P. (2014). Bio-inspired sensor for insect pheromone analysis based on polyaniline functionalized AFM cantilever sensor. Sensors and Actuators b: Chemical, 191, 643–649. https://doi.org/10.1016/j.snb.2013.10.053
Steffens, C., Leite, F. L., Manzoli, A., Sandoval, R. D., Fatibello, O., & Herrmann, P. S. P. (2014). Microcantilever sensors coated with doped polyaniline for the detection of water vapor. Scanning, 36(3), 311–316. https://doi.org/10.1002/sca.21109
Steffens, C., Steffens, J., Graboski, A. M., Manzoli, A., & Leite, F. L. (2017). Nanosensors for detection of pesticides in water. In New Pesticides and Soil Sensors (pp. 595–635). Elsevier. https://doi.org/10.1016/B978-0-12-804299-1.00017-5
Steffens, C., Brezolin, A. N., & Steffens, J. (2018). Conducting polymer-based cantilever sensors for detection humidity. Scanning, 1, 6. https://doi.org/10.1155/2018/4782685
Steffens, J., Coury, J., & Steffens, C. (2010). Nanoparticle Removal Using Fibrous Filters. Filtration, 10, 4.
Swierczewska, M., Liu, G., Lee, S., & Chen, X. (2012). High-sensitivity nanosensors for biomarker detection. Chemical Society Reviews, 41(7), 2641–2655. https://doi.org/10.1039/C1CS15238F
Taborda, D. A. A., de Rodríguez, B., & J., & Agudelo, B. A. D. . (2012). Endocrine disruption in fish. Revista Colombiana De Ciencias Pecuarias., 25(2), 312–323.
Tamayo, J., Kosaka, P. M., Ruz, J. J., San Paulo, Á., & Calleja, M. (2013). Biosensors based on nanomechanical systems. Chemistry Society Review, 42(3), 1287–1311. https://doi.org/10.1039/C2CS35293A
The European Commission. (2015). Commission Implementing Decision (EU) 2015/ 495. Official Journal of the European Union.
Tian, W., Wang, L., Lei, H., Sun, Y., & Xiao, Z. (2018). Antibody production and application for immunoassay development of environmental hormones: a review. Chemical and Biological Technologies in Agriculture, 5(1), 5. https://doi.org/10.1186/s40538-018-0117-0
U.S. Environmental Protection Agency. (2013). Endocrine disruptor screening program; final second list of chemicals and substances for tier 1 screening. Federal Register.
Uraipong, C., Allan, R. D., Li, C., Kennedy, I. R., Wong, V., & Lee, N. A. (2018). 17β-Estradiol residues and estrogenic activities in the Hawkesbury River, Australia. Ecotoxicology and Environmental Safety, 164, 363–369. https://doi.org/10.1016/j.ecoenv.2018.08.013
USEPA. (2012). Revisions to the unregulated contaminant monitoring regulation (UCMR 3) for public water systemse. 77 Federal Register, 26071.
Varotsos, C. A., Krapivin, V. F., & Mkrtchyan, F. A. (2019). New optical tools for water quality diagnostics. Water Air Soil Pollution, 230, 177. https://doi.org/10.1007/s11270-019-4228-4
Vitorino, M. V., Carpentier, S., Panzarella, A., Rodrigues, M. S., & Costa, L. (2015). Giant resonance tuning of micro and nanomechanical oscillators. Scientific Reports, 5(1), 7818. https://doi.org/10.1038/srep07818
Walther, M., Fleming, P. M., Padovani, F., & Hegner, M. (2015). An optimized measurement chamber for cantilever array measurements in liquid incorporating an automated sample handling system. EPJ Techniques and Instrumentation, 2(1), 7. https://doi.org/10.1140/epjti/s40485-015-0017-7
Wang, A., Ding, Y., Li, L., Duan, D., Mei, Q., Zhuang, Q., et al. (2019). A novel electrochemical enzyme biosensor for detection of 17β-estradiol by mediated electron-transfer system. Talanta, 192, 478–485. https://doi.org/10.1016/j.talanta.2018.09.018
Wang, C., Wang, D., Mao, Y., & Hu, X. (2007). Ultrasensitive biochemical sensors based on microcantilevers of atomic force microscope. Analytical Biochemistry, 363(1), 1–11. https://doi.org/10.1016/j.ab.2006.12.010
Wang, T., Liu, K., Yeh, H., & Puleo, C. M. (2010). Nanobiosensors. In Micro/Nano Technology Systems for Biomedical Applications (pp. 346–394). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780199219698.003.0010
Yildirim, N., Long, F., Gao, C., He, M., Shi, H.-C., & Gu, A. Z. (2012). Aptamer-based optical biosensor for rapid and sensitive detection of 17β-estradiol in water samples. Environmental Science & Technology, 46(6), 3288–3294. https://doi.org/10.1021/es203624w
Zhang, S., Wang, Y., Zhang, Y., Yan, T., Yan, L., Wei, Q., & Du, B. (2015). An ultrasensitive electrochemical immunosensor for determination of estradiol using coralloid Cu 2 S nanostructures as labels. RSC Advances, 5(9), 6512–6517. https://doi.org/10.1039/C4RA13066A
Zhang, Y., Lai, B., & Juhas, M. (2019). Recent advances in aptamer discovery and applications. Molecules, 24(5), 941. https://doi.org/10.3390/molecules24050941
Acknowledgements
The authors would like to thank the National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES) – Finance Code 001, the Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (Fapergs), Financiadora de Estudos e Projetos (Finep), and the URI for the financial and structure support.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing interests.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
de Cezaro, A.M., Ballen, S.C., Hoehne, L. et al. Cantilever Nanobiosensors Applied for Endocrine Disruptor Detection in Water: A Review. Water Air Soil Pollut 232, 225 (2021). https://doi.org/10.1007/s11270-021-05179-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11270-021-05179-z