[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the Effective Throughput of Shadowed Beaulieu-Xie Fading Channel

  • Research
  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With the demanding need for next-generation wireless networks and the emergence of real-time applications in wireless communication, data rate performance over these systems is being researched for different fading channels. This study looked into the effective throughput analysis of the shadowed Beaulieu-Xie composite fading channel. The probability density function based approach is used to derive the expressions of the effective capacity (EC) for the aforementioned system. To get the simplified relationship between the performance parameter and channel parameters, the low signal-to-noise-ratio (SNR) and the high-SNR approximations of the effective rate are also provided. The derived expressions are evaluated for different values of fading and shadowing parameters to study its effect on the EC. Also, the impact of the delay parameter on the EC is investigated. The accuracy of the inferred theoretical expressions is confirmed by the results of the Monte-Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No new data were created in this study. Data sharing is not applicable to this article.

References

  1. Kaur, M., & Yadav, R. K. (2021). Effective capacity analysis over Fisher-Snedecor F fading channels with MRC reception. Wireless Personal Communications, 212(3), 1693–1705.

    Article  Google Scholar 

  2. Beaulieu, N. C., & Xie, J. (2015). A novel fading model for channels with multiple dominant specular components. IEEE Wireless Communications Letters, 4(1), 54–57.

    Article  Google Scholar 

  3. Olutayo, A., Cheng, J., & Holzman, J. F. (2020). A new statistical channel model for emerging wireless communication systems. IEEE Open Journal of the Communications Society, 1, 916–926.

    Article  Google Scholar 

  4. Durgin, G. D., Rappaport, T. S., & de Wolf, D. A. (2002). New analytical models and probability density functions for fading in wireless communications. IEEE Transactions on Communications, 50(6), 1005–1015.

    Article  Google Scholar 

  5. Olutayo, A., Ma, H., Cheng, J., & Holzman, J. F. (2017). Level crossing rate and average fade duration for the Beaulieu-Xie fading model. IEEE Wireless Communications Letters, 6(3), 326–329.

    Article  Google Scholar 

  6. Beaulieu, N. C., & Saberali, S. A. (2014). A generalized diffuse scatter plus line-of-sight fading channel model. In: Proc. IEEE International Conference Communications (ICC), Sydney, NSW, Australia, 5849–5853.

  7. Yacoub, M. D. (2010). Nakagami-m phase–envelope joint distribution: A new model. IEEE Transactions on Vehicular Technology, 59(3), 1552–1557.

    Article  MathSciNet  Google Scholar 

  8. Rao, M., Lopez-Martinez, F. J., Alouini, M. S., & Goldsmith, A. (2015). MGF approach to the analysis of generalized two-ray fading model. IEEE Transactions on Wireless Communications, 14(5), 2548–2561.

    Google Scholar 

  9. Chauhan, P. S., Kumar, S., & Soni, S. K. (2020). On the physical layer security over Beaulieu-Xie fading channel. AEU International Journal of Electronics and Communications, 113, 152940.

    Article  Google Scholar 

  10. Kaur, M., & Yadav, R. K. (2022). EC analysis of multi-antenna system over 5G and beyond networks and its application to IRS-assisted wireless systems. Wireless Personal Communications, 124, 1861–1881.

    Article  Google Scholar 

  11. Kaur, M., & Yadav, R. K. (2020). Performance analysis of Beaulieu-Xie fading channel with MRC diversity reception. Transactions on Emerging Telecommunication Technologies, 31, e3949.

    Article  Google Scholar 

  12. Srinivasan, M., & Kalyani, S. (2018). Secrecy capacity of κ-μ shadowed fading channels. IEEE Communications Letters, 22(8), 1728–1731.

    Article  Google Scholar 

  13. Ki Yoo, S., Sofotasios, P. C., Cotton, S. L., Muhaidat, S., Javier Lopez, F., Romero-Jerez, J. M., & Karagiannidis, G. K. (2019). A comprehensive analysis of the achievable channel capacity in F composite fading channels. IEEE Access, 7, 34078–34094.

    Article  Google Scholar 

  14. Zhao, H., Yang, L., Salem, A. S., & Alouini, M.-S. (2019). Ergodic capacity under power adaption over Fisher-Snedecor F fading channels. IEEE Communications Letters, 23(3), 546–549.

    Article  Google Scholar 

  15. Chauhana, P. S., & Soni, S. K. (2019). Average SEP and channel capacity analysis over generic/IG composite fading channels: A unified approach. Physical Communication, 34, 9–18.

    Article  Google Scholar 

  16. Silva, H. S., et al. (2022). Capacity analysis of shadowed Beaulieu-Xie fading channels. Digital Signal Processing, 122, 103367.

    Article  Google Scholar 

  17. Kumar, S. (2018). Energy detection in Hoyt-Gamma fading channel with micro-diversity reception. Wireless Personal Communications, 101(2), 723–734.

    Article  Google Scholar 

  18. Kaur, M., & Yadav, R. K. (2021). Data rate over different applications in 5G and beyond networks. In: 2021 Second international conference on electronics and sustainable communication systems (ICESC). 997–1004.

  19. Wu, D., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communications, 2(4), 630–643.

    Google Scholar 

  20. Chauhan, P. S., Kumar, S. K., Upadhayay, V. K., & Soni, S. K. (2021). Unified approach to effective capacity for generalised fading channels. Physical Communication, 45, 101278.

    Article  Google Scholar 

  21. Yadav, P., Kumar, S., & Kumar, R. (2021). Analysis of EC over Gamma shadowed α–η–μ fading channel. In: IOP Conference series: Material Science & Engineering, Nirjuli, India, 012010.

  22. Yadav, P., Kumar, S., & Kumar, R. (2020). Effective capacity analysis over α–κ–μ/Gamma composite fading channel. In: IEEE International conference on advances in computing, communication control and networking (ICACCCN), Greater Noida, India. 587–592.

  23. Yoo, S. K., Cotton, S., Sofotasios, P., Muhaidat, S., & Karagiannidis, G. (2020). Effective capacity analysis over generalized composite fading channels. IEEE Access, 8, 123756–123764.

    Article  Google Scholar 

  24. Singh, R., & Rawat, M. (2019).On the performance analysis of effective capacity of double shadowed κ—μ fading channels. In: IEEE Region 10 Conference (TENCON)Kochi. 806 810.

  25. Ai, Y., Mathur, A., Kong, L., & Cheffena, M. (2020). Effective throughput analysis of α-η-κ-μ fading channels. IEEE Access, 8, 57363–57371.

    Article  Google Scholar 

  26. Xiao, C., Zeng, J., Ni, W., Liu, R. P., Su, X., & Wang, J. (2019). Delay guarantee and effective capacity of downlink NOMA fading channels. IEEE Journal of Selected Topics in Signal Processing, 13(3), 508–523.

    Article  Google Scholar 

  27. Shehab, M., Alves, H., & Latva-aho, M. (2019). Effective capacity and power allocation for machine-type communication. IEEE Transactions on Vehicular Technology, 68(4), 4098–4102.

    Article  Google Scholar 

  28. Yadav, P., Kumar, R., & Kumar, S. (2020). Effective capacity analysis over generalized lognormal shadowed composite fading channels. Internet Technology Letters, 3(5), e171.

    Article  Google Scholar 

  29. Gursoy, M. C. (2011). MIMO wireless communications under statistical queueing constraints. IEEE Transactions on Information Theory, 57(9), 5897–5917.

    Article  MathSciNet  Google Scholar 

  30. Erd´elyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F. G. (1954). Tables of integral transforms (Vol. 1). McGraw-Hill Book Company Inc.

    Google Scholar 

  31. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). Academic Press Inc.

    Google Scholar 

  32. Kang, M., & Alouini, M. S. (2006). Capacity of MIMO Rician channels. IEEE Transactions on wireless communications, 5(1), 112–122.

    Article  Google Scholar 

  33. Wolfram Research Inc. (2023). The Mathematical functions site: Tricomi confluent hypergeometric function, https://functions.wolfram.com/07.33.17.0007.01, Champaign IL

  34. You, M., Sun, H., Jiang, J., & Zhang, J. (2016). Effective rate analysis in Weibull fading channels. IEEE Wireless Communication Letters, 5(4), 340–343.

    Article  Google Scholar 

Download references

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have equally contributed in this manuscript.

Corresponding author

Correspondence to Sandeep Kumar.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The error in (9) by truncation the series by D number of terms can be given by

$$E_{D} = \sum\limits_{d = D}^{\infty } {\frac{{\Gamma \left( {m_{Y} + d} \right)z^{d} }}{d!}} U\left( {m_{X} + d;m_{X} + d + 1 - A;\frac{{m_{X} C}}{{\overline{\gamma } \Omega_{X} }}} \right).$$
(21)

Substituting g = d-D in the above equation and rearranging the terms, we get

$$E_{D} = \sum\limits_{g = 0}^{\infty } {z^{D} \frac{{\Gamma \left( {m_{Y} + D + g} \right)}}{{\left( {D + g} \right)!}}} z^{d} U\left( {m_{X} + D + g;m_{X} + D + g + 1 - A;\frac{{m_{X} C}}{{\overline{\gamma } \Omega_{X} }}} \right).$$
(22)

Since \(U\left( {m_{X} + D + g;m_{X} + D + g + 1 - A;\frac{{m_{X} C}}{{\overline{\gamma } \Omega_{X} }}} \right)\) is a monotonically decreasing function with respect to g,\(E_{D}\) can be upper bounded as

$$E_{D} \le \frac{{z^{D} \Gamma \left( {m_{Y} + D} \right)}}{D!}U\left( {m_{X} + D;m_{X} + D + 1 - A;\frac{{m_{X} C}}{{\overline{\gamma } \Omega_{X} }}} \right)\sum\limits_{g = 0}^{\infty } {\frac{{\left( 1 \right)_{g} \left( {m_{Y} + D} \right)_{g} }}{{g!\left( {D + 1} \right)_{g} }}} z^{g} .$$
(23)

Using the infinite series expansion of \({}_{2}F_{1} \left( {.,.;.;.} \right)\) in the above equation, the closed-form expression of the upper bound of the truncation error can be obtained as (10).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, M., Chauhan, P.S., Kumar, S. et al. On the Effective Throughput of Shadowed Beaulieu-Xie Fading Channel. Wireless Pers Commun 136, 165–180 (2024). https://doi.org/10.1007/s11277-024-11248-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11248-3

Keywords

Navigation