[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Order Statistics and Record Values Moments from the Topp-Leone Lomax Distribution with Applications to Entropy

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we derive the exact expressions, as well as recurrence relations, for the single and product moments of the order statistics (OSs) and record values of the Topp-Leone Lomax (TLLo) distribution proposed by Oguntunde et al. (Wirel Person Commun 109:349–360, 2019). In addition, we study the corresponding L-moments. We estimate the distribution parameters through these L-moments and compare our results to those obtained in other models. Subsequently, motivated by the study of Okorie and Nadarajah (Wirel Person Commun 115:589–596, 2020), we fit the flood level data to the TLLo distribution. Finally, we reveal a relationship between the entropy and the upper and lower record values, as well as OSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

https://doi.org/10.1080/00401706.1973.10489124.

Code Availability

We are using the softwere MATHEMATICA an R to calculate the numeical values.

References

  1. Ahsanullah, M. (1995). Record statistics. Nova Science Publishers.

    Google Scholar 

  2. Ahsanullah, M., & Nevzorov, V. B. (2015). Record via probability theory. Atlantis Press.

    Book  Google Scholar 

  3. Alam, M., Khan, R. U., & Athar, H. (2022). Lower record values from generalized inverse Weibull distribution. Journal of Mathematical Modeling, 10, 93–106.

    MathSciNet  Google Scholar 

  4. Alam, M., Khan, M. A., & Khan, R. U. (2020). Characterization of NH distribution through generalized record values. Applied Mathematics E-Notes, 20, 406–414.

    MathSciNet  Google Scholar 

  5. Alam, M., Khan, M. A., & Khan, R. U. (2021). On upper \(k\)-record values from the generalized linear exponential distribution. Journal of Statistical Theory and Applications, 20, 289–303.

    Article  Google Scholar 

  6. Alam, M., & Vidovic, Z. (2023). K-th record moments and characterization of inverted Nadarajag–Haghighi distribution. Pakistan Journal of Statistics, 39, 99–113.

    Google Scholar 

  7. Arnold, B. C., Balakrishnan, N., & Nagaraja, H. N. (2008). A first course in order statistics. SIAM Publishers.

    Book  Google Scholar 

  8. Arnold, B. C., Balakrishnan, N., & Nagaraja, H. N. (2011). Records. Wiley.

    Google Scholar 

  9. Asgharzadeha, A., Abdib, M., & Nadarajah, S. (2016). Interval estimation for Gumbel distribution using climate records. Bulletin of the Malaysian Mathematical Sciences Society, 39, 257–270.

    Article  MathSciNet  Google Scholar 

  10. Balakrishnan, N., Buono, F., & Longobardi, M. (2022). On cumulative entropies in terms of moments of order statistics. Methodology and Computing in Applied Probability, 24, 345–359.

    Article  MathSciNet  Google Scholar 

  11. Balakrishnan, N., & Cohen, A. C. (1992). Order statistics and inference estimation methods. Journal of the Royal Statistical Society, Series A, 155, 307.

    Article  Google Scholar 

  12. Barakat, H. M., & Abd Elgwad, M. A. (2009). Asymptotic behavior of the joint record values, with applications. Statistics and Probability Letters, 124, 13–21.

    Article  MathSciNet  Google Scholar 

  13. Barakat, H. M., Ghitany, M. E., & Al-Hussaini, E. K. (2009). Asymptotic distributions of order statistics and record values under the Marshall Olkin parameterization operation. Communications in Statistics: Theory and Methods, 38(13), 2267–2273.

    Article  MathSciNet  Google Scholar 

  14. Calì, C., Longobardi, M., & Ahmadi, J. (2017). Some properties of cumulative Tsallis entropy. Physica A, 486, 1012–1021.

    Article  MathSciNet  Google Scholar 

  15. Calì, C., Longobardi, M., & Navarro, J. (2020). Properties for generalized cumulative past measures of information. Probability in the Engineering and Informational Sciences, 34, 92–111.

    Article  MathSciNet  Google Scholar 

  16. Calì, C., Longobardi, M., & Psarrakos, G. (2021). A family of weighted distributions based on the mean inactivity time and cumulative past entropies. Ricerche di Matematica, 70, 395–409.

    Article  MathSciNet  Google Scholar 

  17. Chandler, K. N. (1952). The distribution and frequency of record values. Journal of the Royal Statistical Society, Series B, 14, 220–228.

    Article  MathSciNet  Google Scholar 

  18. Chesneau, C., Sharma, V., & Bakouch, H. (2021). Extended Topp–Leone family of distributions as an alternative to beta and Kumaraswamy type distributions: Application to glycosaminoglycans concentration level in urine. International Journal of Biomathematics, 14, 2050088.

    Article  MathSciNet  Google Scholar 

  19. Comtet, L. (1974). Advanced combinatiories. D. Riedel Publishing Company.

    Book  Google Scholar 

  20. David, H. A., & Nagaraja, H. N. (2003). Order statistics (3rd ed.). Wiley.

    Book  Google Scholar 

  21. Di Crescenzo, A., & Longobardi, M. (2009). On cumulative entropies. Journal of Statistical Planning and Inference, 139, 4072–4087.

    Article  MathSciNet  Google Scholar 

  22. Dumonceaux, R., & Antle, C. E. (1973). Discrimination between the lognormal and Weibull distribution. Technometrics, 15, 923–926.

    Article  Google Scholar 

  23. Glen, A. G., Leemis, L. M., & Barr, D. R. (2001). Order statistics in goodness-of-fit testing. IEEE Transactions on Reliability, 50, 209–213.

    Article  Google Scholar 

  24. Hegazy, Y. A. S., & Green, J. R. (1975). Some new goodness-of-fit tests using order statistics. Journal of the Royal Statistical Society, Series C, 24, 299–308.

    Google Scholar 

  25. Hosking, J. R. M. (1990). L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society, Series B, 52(1), 105–124.

    Article  MathSciNet  Google Scholar 

  26. Kamps, U. (1995). A concept of generalized order statistics. B. G. Teubner.

    Book  Google Scholar 

  27. Longobardi, M. (2014). Cumulative measures of information and stochastic orders. Ricerche di Matematica, 63, 209–223.

    Article  MathSciNet  Google Scholar 

  28. Makouei, R., Khamnei, H. J., & Salehi, M. (2021). Moments of order statistics and \(k\)-record values arising from the complementary beta distribution with application. Journal of Computational and Applied Mathematics, 390, 1133–1186.

    Article  MathSciNet  Google Scholar 

  29. Mathai, A. M., & Saxena, R. K. (1973). Generalized hyper-geometric functions with applications in statistics and physical science. Lecture notes in mathematics (Vol. 348). Springer.

    Google Scholar 

  30. Mohamed, M. S., Barakat, H. M., Alyami, S. A., & Abd Elgawad, M. A. (2021). Fractional entropy-based test of uniformity with power comparisons. Journal of Mathematics, 2021, Article ID 5331260.

  31. Oguntunde, P. E., Khaleel, M. A., Okagbue, H. T., & Odetunmibi, O. A. (2019). The Topp-Leone Lomax (TLLo) distribution with applications to airbone communication transceiver dataset. Wireless Personal Communications, 109, 349–360.

    Article  Google Scholar 

  32. Okorie, Idika EI.E.., & Nadarajah, S. (2020). A note on “The Topp-Leone Lomax (TLLo) distribution with applications to airbone communication transceiver dataset’’. Wireless Personal Communications, 115, 589–596.

    Article  Google Scholar 

  33. Rao, M., Chen, Y., Vemuri, B., & Wang, F. (2004). Cumulative residual entropy: A new measure of information. IEEE Transactions on Information Theory, 50, 1220–1228.

    Article  MathSciNet  Google Scholar 

  34. Shah, I. A., Khan, A. H., & Barakat, H. M. (2014). Random translation, dilation and contraction of order statistics. Statistics and Probability Letters, 92, 209–214.

    Article  MathSciNet  Google Scholar 

  35. Shah, I. A., Barakat, H. M., & Khan, A. H. (2018). Characterization of Pareto and power function distributions by conditional variance of order statistics. Comptes Rendus de l’Académie Bulgare des Sciences, 71(3), 313–316.

    MathSciNet  Google Scholar 

  36. Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379–423.

    Article  MathSciNet  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

MA proposed the concept of the paper and calculated the existing results. HMB contributed in writing original draft preparation and determined the existing results. HSB contributes to the methodology and concepts for the e existing results. CC, HMB and HSB performed revision and improved the quality of the draft. All authors have read and agreed to the published version of the manuscrit.

Corresponding author

Correspondence to Mahfooz Alam.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M., Barakat, H.M., Bakouch, H.S. et al. Order Statistics and Record Values Moments from the Topp-Leone Lomax Distribution with Applications to Entropy. Wireless Pers Commun 135, 2209–2227 (2024). https://doi.org/10.1007/s11277-024-11136-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11136-w

Keywords

Navigation