[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A Novel Approach Using Transfer Learning Architectural Models Based Deep Learning Techniques for Identification and Classification of Malignant Skin Cancer

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Melanoma, a form of skin cancer originating in melanocyte cells, poses a significant health risk, although it is less prevalent than other types of skin cancer. Its detection presents challenges, even under expert observation. To enhance the classification accuracy of skin lesions, a Deep Convolutional Neural Network, Visual Geometry Group model has been proposed. However, deep learning methods typically require substantial training time. To mitigate this, transfer learning techniques are employed, reducing training duration. Data sets sourced from the International Skin Imaging Collaboration are utilized to train the model within this proposed approach. Evaluation of classification performance involves metrics such as Accuracy, Positive Predictive Value, Negative Predictive Value, Specificity, and Sensitivity. The classifier’s performance on test data is depicted through a confusion matrix. The introduction of transfer learning techniques into the Deep Convolutional Neural Network has resulted in an improved classification accuracy of 85%, compared to the 81% achieved by a standard Convolutional Neural Network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. The skin cancer foundation (2022) https://www.skincancer.org/.

  2. Nasr-Esfahani, E., Samavi, S., Karimi, N., Soroushmehr, S. M. R., Jafari, M. H., Ward, K., & Najarian, K. (2016) Melanoma detection by analysis of clinical images using convolutional neural network. In 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1373–1376).

  3. Gessert, N., Sentker, T., Madesta, F., Schmitz, R., Kniep, H., Baltruschat, I., Werner, R., & Schlaefer A. (2018). Skin lesion diagnosis using ensembles, unscaled multi-crop evaluation and loss weighting, arXiv preprint arXiv:1808.01694.

  4. Kadampur, M. A., & Al Riyaee, S. (2020). Skin cancer detection: Applying a deep learning based model driven architecture in the cloud for classifying dermal cell images. Informatics in Medicine Unlocked, 18, 100282.

    Article  Google Scholar 

  5. Harangi, B., Baran, A., & Hajdu, A., (2018) Classification of skin lesions using an ensemble of deep neural networks. In 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2575–2578).

  6. Majtner, T., Yildirim-Yayilgan, S., & Hardeberg, J. Y. (2018). Optimised deep learning features for improved melanoma detection. Multimedia Tools and Applications, 78, 11883–11903.

    Article  Google Scholar 

  7. Gulati, S., & Bhogal, R. K. (2019) Detection of malignant melanoma using deep learning. In: ICACDS Communications in Computer and Information Science, vol. 1045 (pp. 312–325). Springer

  8. Pham, H. N., Koay, C. Y., Chakraborty, T., Gupta, S., Tan, B. L., Wu, H., Vardhan, A., Nguyen, Q. H., Palaparthi, N. R., Nguyen, B. P., & Chua, M. C. (2019). Lesion segmentation and automated melanoma detection using deep convolutional neural networks and XGBoost. In 2019 International Conference on System Science and Engineering (ICSSE) (pp. 142–147).

  9. Dorj, U. O., Lee, K. K., Choi, J. Y., & Lee, M. (2018). The skin cancer classification using deep convolutional neural network. Multimedia Tools and Applications, 8, 9909–9924.

    Article  Google Scholar 

  10. Hekler, A., Utikal, J. S., Enk, A. H., Hauschild, A., Weichenthal, M., Maron, R. C., Berking, C., Haferkamp, S., Klode, J., Schadendorf, D., & Schilling, B. (2019). Superior skin cancer classification by the combination of human and artificial intelligence. European Journal of Cancer, 120, 114–121.

    Article  Google Scholar 

  11. Nahata, H., & Singh, S. P. (2020) Deep learning solutions for skin cancer detection and diagnosis. Machine learning with health care perspective learning and analytics in intelligent systems, Springer vol. 13 (pp. 159–182).

  12. Romero Lopez, A., Giro-i-Nieto, X., Burdick, J., & Marques, O. (2017). Skin lesion classification from dermoscopic images using deep learning techniques. In 2017 13th IASTED International Conference on Biomedical Engineering (BioMed) (pp. 49–54).

  13. Kaur, R., GholamHosseini, H., & Sinha, R. (2020). Deep convolutional neural network for melanoma detection using dermoscopy images. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 1524–1527)

  14. Daghrir, J., Tlig, L., Bouchouicha, M., & Sayadi, M. (2020). Melanoma skin cancer detection using deep learning and classical machine learning techniques: A hybrid approach. In 2020 5th international conference on advanced technologies for signal and image processing (ATSIP) (pp. 1–5).

  15. Mahbod, A., Schaefer, G., Wang, C., Ecker, R., & Ellinge, I. (2019) Skin lesion classification using hybrid deep neural networks. In 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 1229–1233).

  16. Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115.

    Article  Google Scholar 

  17. Hosny, K. M., Kassem, M. A., & Fouad, M. M. (2020). Skin melanoma classification using ROI and data augmentation with deep convolutional neural networks. Multimedia Tools and Applications, 79, 24029–24055.

    Article  Google Scholar 

  18. Attia, M., Hossny, M., Nahavandi, S., & Yazdabadi, A. (2017). Skin melanoma segmentation using recurrent and convolutional neural networks. In 2017 IEEE 14th International Symposium on Biomedical Imaging (pp. 292–296)

  19. Codella, N., Nguyen, Q.-B., Pankanti, S., Gutman, D., Helba, B., Halpern, A., & Smith, J. (2017). Deep learning ensembles for melanoma recognition in dermoscopy images. IBM Journal of Research and Development, 61(4), 5–1.

    Google Scholar 

  20. Pham, T.-C., Luong, C.-M., Visani, M., & Hoang, V.-D. (2018). Deep CNN and data augmentation for skin lesion classification. In ACIIDS Lecture Notes in Computer Science, vol. 10752. Springer

  21. Loureiro, C., Filipe, V., & Gonçalves, L. (2022) Attention mechanism for classification of melanomas. In International Conference on Optimization, Learning Algorithms and Applications (pp. 65–77). Springer International Publishing.

  22. Mann, S., Yadav, D., Muthusamy, S., Rathee, D., & Mishra, O. P. (2024) A novel method for prediction and analysis of COVID 19 transmission using machine learning based time series models. Wireless Personal Communications, 133, 1935–1961. https://doi.org/10.1007/s11277-023-10836-z.

    Article  Google Scholar 

  23. Ramasamy, M. D., Periasamy, K., Periasamy, S., Muthusamy, S., Ramamoorthi, P., Thangavel, G., et al. (2023) A novel Adaptive Neural Network-Based Laplacian of Gaussian (AnLoG) classification algorithm for detecting diabetic retinopathy with colour retinal fundus images. Neural Computing and Applications, 36, 3513–3524. https://doi.org/10.1007/s00521-023-09324-z.

    Article  Google Scholar 

  24. Kozakijevic, S., Salb, M., Elsadai, A., Mani, J., Devi, K., Sharko, A. D., & Muthusamy, S. (2023) Seizure detection via time series classification using modified metaheuristic optimized recurrent networks. Theoretical and Applied Computational Intelligence, 1(1), 82–94.

    Article  Google Scholar 

  25. International Skin Imaging Collaboration (ISIC). (2019) Isic archive, 2019. https://www.isic-archive.com.

  26. Raghavendran, P. S., Ragul, S., Asokan, R., Loganathan, A. K., Muthusamy, S., Mishra, O. P., Ramamoorthi, P., & Sundararajan, S. C. M. (2023) A new method for chest X-ray images categorization using transfer learning and CovidNet_2020 employing convolution neural network. Soft Computing, 27(19), 14241–14251.

    Article  Google Scholar 

  27. Sinnaswamy, R. A., Palanisamy, N., Subramaniam, K., Muthusamy, S., Lamba, R., & Sekaran, S. (2023) An extensive review on deep learning and machine learning intervention in prediction and classification of types of aneurysms. Wireless Personal Communications, 131(3), 2055–2080.

    Article  Google Scholar 

  28. Subramaniam, K., Palanisamy, N., Sinnaswamy, R. A., Muthusamy, S., Mishra, O. P., Loganathan, A. K., Ramamoorthi, P., Gnanakkan, C. A. R. C., Thangavel, G., & Sundararajan S. C. M. (2023) A comprehensive review of analyzing the chest X-ray images to detect COVID-19 infections using deep learning techniques. Soft Computing, 27(19), 14219–14240.

    Article  Google Scholar 

  29. Thangavel, K., Palanisamy, N., Muthusamy, S., Mishra, O. P., Sundararajan, S. C. M., Panchal, H., Loganathan, A. K., & Ramamoorthi, P. (2023) A novel method for image captioning using multimodal feature fusion employing mask RNN and LSTM models. Soft Computing, 27(19), 14205–14218.

    Article  Google Scholar 

  30. Gnanadesigan, N. S., Dhanasegar, N., Ramasamy, M. D., Muthusamy, S., Mishra, O. P., Pugalendhi, G. K., Sundararajan, S. C. M., & Ravindaran, A. (2023) An integrated network topology and deep learning model for prediction of Alzheimer disease candidate genes. Soft Computing, 27(19), 14189–14203.

    Article  Google Scholar 

  31. Krishnasamy, K. G., Periasamy, S., Periasamy, K., Prasanna Moorthy, V., Thangavel, G., Lamba, R., & Muthusamy, S. (2023) A Pair-task heuristic for scheduling tasks in heterogeneous multi-cloud environment. Wireless Personal Communications, 131(2), 773–804.

    Article  Google Scholar 

  32. Ismail, M. A., Hameed, N., & Clos, J. (2021) Deep learning-based algorithm for skin cancer classification. In Proceedings of International Conference on Trends in Computational and Cognitive Engineering (pp. 709–719).

  33. Jagadeesan, V., Venkatachalam, D., Vinod, V. M., Loganathan, A. K., Muthusamy, S., Krishnamoorthy, M., Sadasivuni, K. K., & Geetha, M. (2023) Design and development of a new metamaterial sensor-based Minkowski fractal antenna for medical imaging. Applied Physics A, 129(5), 391.

    Article  Google Scholar 

  34. Periyasamy, K., Rathinam, V., Ganesan, K., Ramachandran, M., Muthusamy, S., Lamba, R., Panchal, H., Shanmugam, M., Jalajakumari, S. P. S. N., & Kottapalli, R. (2023) A novel method for analyzing the performance of free space optical communication in WDM using EDFA. Wireless Personal Communications, 131(1), 679–707.

    Article  Google Scholar 

  35. Kannan, E., Avudaiappan, M., Kaliyaperumal, S., Muthusamy, S., Pandiyan, S., Panchal, H., Manickam, K., & Shanmugam, C. (2023) A novel single phase grid connected solar photovoltaic system for state of charge estimation using recurrent neural networks. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45(1), 841–859.

    Article  Google Scholar 

  36. Batcha, B. B. C., Singaravelu, R., Ramachandran, M., Muthusamy, S., Panchal, H., Thangaraj, K., & Ravindaran, A. (2023) A novel security algorithm RPBB31 for securing the social media analyzed data using machine learning algorithms. Wireless Personal Communications, 131(1), 581–608.

    Article  Google Scholar 

  37. Rakkiannan, T., Ekambaram, G., Palanisamy, N., Ramasamy, R. R., Muthusamy, S., Loganathan, A. K., Panchal, H., Thangaraj, K., & Ravindaran, A. (2023) An automated network slicing at edge with software defined networking and network function virtualization: a federated learning approach. Wireless Personal Communications, 131(1), 639–658.

    Article  Google Scholar 

  38. Bennet, M. A., Mishra, O. P., & Muthusamy, S. (2023) Modeling of upper limb and prediction of various yoga postures using artificial neural networks. In 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS) (pp. 503–508). IEEE.

  39. Kathamuthu, N. D., Subramaniam, S., Le, Q. H., Muthusamy, S., Panchal, H., Sundararajan, S. C. M., Alrubaie, A. J., & Zahra, M. M. A. (2023) A deep transfer learning-based convolution neural network model for COVID-19 detection using computed tomography scan images for medical applications. Advances in Engineering Software, 175, 103317.

    Article  Google Scholar 

  40. Suresh, M., Meenakumari, R., Panchal, H., Priya, V., El Agouz, E. S., & Israr, M. (2022) An enhanced multiobjective particle swarm optimisation algorithm for optimum utilisation of hybrid renewable energy systems. International Journal of Ambient Energy, 43(1), 2540–2548.

    Article  Google Scholar 

  41. Balan, G., Arumugam, S., Muthusamy, S., Panchal, H., Kotb, H., Bajaj, M., Ghoneim, S. M., & Kitmo. (2022) An improved deep learning-based technique for driver detection and driver assistance in electric vehicles with better performance. International Transactions on Electrical Energy Systems, 2022, 8548172. https://doi.org/10.1155/2022/8548172.

    Article  Google Scholar 

  42. Subasri, R., Meenakumari, R., Panchal, H., Suresh, M., Priya, V., Ashokkumar, R., & Sadasivuni, K. K. (2022) Comparison of BPN, RBFN and wavelet neural network in induction motor modelling for speed estimation. International Journal of Ambient Energy, 43(1), 3246–3251.

    Article  Google Scholar 

  43. Younis, H., Bhatti, M. H., & Azeem M. (2019) Classification of skin cancer dermoscopy images using transfer learning. In 15th International Conference on Emerging Technologies (ICET) (pp. 1–4).

  44. Barata, C., & Marques, J. S. (2019) Deep learning for skin cancer diagnosis with hierarchical architectures. In IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) (pp. 841–845).

  45. Hosny, K. M., Kassem, M. A., & Foaud, M. M. (2018) Skin cancer classification using deep learning and transfer learning. In 9th Cairo International Biomedical Engineering Conference (CIBEC) (pp. 90–93).

  46. Ashraf, R., Afzal, S., Rehman, A. U., Gul, S., Baber, J., Bakhtyar, M., Mehmood, I., Song, O.-Y., & Maqsood, M. (2020) Region-of-interest based transfer learning assisted framework for skin cancer detection. IEEE Access, 8, 147858–147871.

    Article  Google Scholar 

  47. Mijwil, M. M. (2021) Skin cancer disease images classification using deep learning solutions. Multimedia Tools and Applications, 80(17), 26255–26271.

    Article  Google Scholar 

  48. Kassem, M. A., Hosny, K. M., & Fouad, M. M. (2020) Skin lesions classification into eight classes for ISIC 2019 using deep convolutional neural network and transfer learning. IEEE Access, 8, 114822–114832.

    Article  Google Scholar 

  49. Ali, M. S., Miah, M. S., Haque, J., Rahman, M. M., & Islam, M. K. (2021) An enhanced technique of skin cancer classification using deep convolutional neural network with transfer learning models. Machine Learning with Applications, 5, 100036.

    Article  Google Scholar 

  50. Tan, T. Y., Zhang, L., & Lim, C. P. (2019) Intelligent skin cancer diagnosis using improved particle swarm optimization and deep learning models. Applied Soft Computing, 84, 105725.

    Article  Google Scholar 

  51. Chao, E., Meenan, C. K., & Ferris, L. K. (2017) Smartphone-based applications for skin monitoring and melanoma detection. Dermatologic clinics, 4, 551–557.

    Article  Google Scholar 

  52. Chaturvedi, S. S., Tembhurne, J. V., & Diwan, T. (2020) A multi-class skin Cancer classification using deep convolutional neural networks. Multimedia Tools and Applications, 79(39), 28477–28498.

    Article  Google Scholar 

  53. Thurnhofer-Hemsi, K., López-Rubio, E., Domínguez, E., & Elizondo, D. A. (2021) Skin lesion classification by ensembles of deep convolutional networks and regularly spaced shifting. IEEE Access, 9, 112193–112205. https://doi.org/10.1109/ACCESS.2021.3103410

    Article  Google Scholar 

Download references

Funding

There was no financial support received from any organization for carrying out this work.

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally for the preparation of the manuscript. Balambigai Subramanian, Suresh Muthusamy—Preparation of manuscript. Kokilavani Thangaraj, Hitesh Panchal—Overall supervision. Elavarasi Kasirajan, Abarna Marimuthu, Abinaya Ravi—Data collection, experimentation.

Corresponding author

Correspondence to Suresh Muthusamy.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subramanian, B., Muthusamy, S., Thangaraj, K. et al. A Novel Approach Using Transfer Learning Architectural Models Based Deep Learning Techniques for Identification and Classification of Malignant Skin Cancer. Wireless Pers Commun 134, 2183–2201 (2024). https://doi.org/10.1007/s11277-024-11006-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-11006-5

Keywords

Navigation