[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the Development of Super-Wideband Sierpinski Triangular Fractal Antenna

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this work, a super-wideband (SWB) Sierpinski triangular fractal antenna has been proposed. Keeping electrical dimension (ED) small and bandwidth dimension ratio (BDR) high is a big challenge in SWB antenna design. Sierpinski triangular fractal, slotted and tapered grounds have been used to meet these challenges with a wide operating frequency bandwidth. Operating range of the antenna is from 1.6 to 45 GHz, with a gain more than 1 dBi, bandwidth ratio of 28.1:1, VSWR less than or equal to 2, and with a reflection coefficient (S11) less than − 10 dB. ED of the proposed SWB antenna is 0.12λk × 0.14λk, here λk is the wavelength as per the lowest operating frequency. FR4 material is used as substrate to design and fabricate antenna. Results are measured till 20 GHz which are found quite promising in terms of − 10 dB impedance bandwidth. BDR of the designed antenna is 11,087.3 and ED are small which proves the design effectiveness. Proposed SWB antenna is useful for multiple bands such as WiMax, WiFi, Fixed Satellite Services, Radio Navigation, L, S, C, X, Ku,and Ka bands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

There is no availability of data or materials available or report for the manuscript.

Code Availability

Not Applicable.

References

  1. Balanis, C. (2005). Antenna theory: Analysis and design (3rd ed.). Wiley.

    Google Scholar 

  2. Kumar, A., Kumar, V., Sharma, R., & Pharwaha, A. P. S. (2023). On the development of compact super-wideband fractal antenna. Indian Journal of Science and Technology, 16(15), 1145–1152. https://doi.org/10.17485/IJST/v16i15.2403

    Article  Google Scholar 

  3. Azari, A. (2011). A new super wideband fractal microstrip antenna. IEEE Transactions on Antennas and Propagation, 59(5), 1724–1727. https://doi.org/10.1109/TAP.2011.2128294

    Article  Google Scholar 

  4. Dong, Y., Hong, W., Liu, L., Zhang, Y., & Kuai, Z. (2009). Performance analysis of a printed super-wideband antenna. Microwave and Optical Technology Letters, 51(4), 949–956. https://doi.org/10.1002/mop.24222

    Article  Google Scholar 

  5. Agrawall, N. P., Kumar, G., & Ray, K. P. (1998). Wide-band planar monopole antennas. IEEE Transactions on Antennas and Propagation, 46(2), 294–295. https://doi.org/10.1109/8.660976

    Article  Google Scholar 

  6. Yang, T., Suh, S.-Y., Nealy, R., Davis, W. A., & Stutzman, W. L. (2003). Compact antennas for UWB applications. In IEEE conference on ultra wideband systems and technologies, 2003 (pp. 205–208). IEEE. https://doi.org/10.1109/UWBST.2003.1267833

  7. Kumar, A., Dewan, B., Khandelwal, A., & Shrivastava, K. (2023). On the devolvement of fractal antenna for IoT applications. Engineering Research Express, 5(3), 035026. https://doi.org/10.1088/2631-8695/acebb8

    Article  Google Scholar 

  8. Kumar, A., & Singh Pharwaha, A. P. (2019). On the design of wideband sierpinski carpet fractal antenna for radio navigation and fixed satellite services. In 2019 6th international conference on signal processing and integrated networks (SPIN) (pp. 736–738). IEEE. https://doi.org/10.1109/SPIN.2019.8711744

  9. Kumar, A., & Pharwaha, A. P. S. (2021). On the design of novel half T-square strip fractal antenna. International Journal of Electronics, 108(10), 1774–1789. https://doi.org/10.1080/00207217.2020.1870745

    Article  Google Scholar 

  10. Cohen, N. (1997). Fractal antenna applications in wireless telecommunications. In Professional program proceedings. electronic industries forum of New England (pp. 43–49). IEEE. https://doi.org/10.1109/EIF.1997.605374

  11. Figueroa-Torres, C. Á., Medina-Monroy, J. L., Lobato-Morales, H., Chávez-Pérez, R. A., & Calvillo-Téllez, A. (2017). A novel fractal antenna based on the Sierpinski structure for super wide-band applications. Microwave and Optical Technology Letters, 59(5), 1148–1153. https://doi.org/10.1002/mop.30489

    Article  Google Scholar 

  12. Werner, D. H., Haupt, R. L., & Werner, P. L. (1999). Fractal antenna engineering: The theory and design of fractal antenna arrays. IEEE Antennas and Propagation Magazine, 41(5), 37–59. https://doi.org/10.1109/74.801513

    Article  Google Scholar 

  13. Singhal, S., & Singh, A. K. (2016). CPW-fed hexagonal Sierpinski super wideband fractal antenna. IET Microwaves, Antennas and Propagation, 10(15), 1701–1707. https://doi.org/10.1049/iet-map.2016.0154

    Article  Google Scholar 

  14. Shahu, B. L., Pal, S., & Chattoraj, N. (2015). Design of super wideband hexagonal-shaped fractal antenna with triangular slot. Microwave and Optical Technology Letters, 57(7), 1659–1662. https://doi.org/10.1002/mop.29184

    Article  Google Scholar 

  15. Singhal, S., & Singh, A. K. (2017). Modified star-star fractal (MSSF) super-wideband antenna. Microwave and Optical Technology Letters, 59(3), 624–630. https://doi.org/10.1002/mop.30357

    Article  Google Scholar 

  16. Tang, M.-C., Ziolkowski, R. W., & Xiao, S. (2014). Compact hyper-band printed slot antenna with stable radiation properties. IEEE Transactions on Antennas and Propagation, 62(6), 2962–2969. https://doi.org/10.1109/TAP.2014.2314299

    Article  Google Scholar 

  17. Gorai, A., Karmakar, A., Pal, M., & Ghatak, R. (2013). A CPW-FED propeller shaped monopole antenna with super wideband characteristics. Progress In Electromagnetics Research C, 45, 125–135. https://doi.org/10.2528/PIERC13082805

    Article  Google Scholar 

  18. Hakimi, S., Rahim, S. K. A., Abedian, M., Noghabaei, S. M., & Khalily, M. (2014). CPW-fed transparent antenna for extended ultrawideband applications. IEEE Antennas and Wireless Propagation Letters, 13, 1251–1254. https://doi.org/10.1109/LAWP.2014.2333091

    Article  Google Scholar 

  19. Manohar, M., Kshetrimayum, R. S., & Gogoi, A. K. (2014). Printed monopole antenna with tapered feed line, feed region and patch for super wideband applications. IET Microwaves, Antennas and Propagation, 8(1), 39–45. https://doi.org/10.1049/iet-map.2013.0094

    Article  Google Scholar 

  20. Yeo, J., & Lee, J.-I. (2014). Coupled-sectorial-loop antenna with circular sectors for super wideband applications. Microwave and Optical Technology Letters, 56(7), 1683–1689. https://doi.org/10.1002/mop.28416

    Article  Google Scholar 

  21. Rahman, M. N., Islam, M. T., Mahmud, M. Z., & Samsuzzaman, M. (2017). Compact microstrip patch antenna proclaiming super wideband characteristics. Microwave and Optical Technology Letters, 59(10), 2563–2570. https://doi.org/10.1002/mop.30770

    Article  Google Scholar 

  22. Rafique, U., Din, S., & Khalil, H. (2021). Compact CPW-fed super wideband planar elliptical antenna. International Journal of Microwave and Wireless Technologies, 13(4), 407–414. https://doi.org/10.1017/S175907872000121X

    Article  Google Scholar 

  23. Singh, S., Varma, R., Sharma, M., & Hussain, S. (2022). Superwideband monopole reconfigurable antenna with triple notched band characteristics for numerous applications in wireless system. Wireless Personal Communications. https://doi.org/10.1007/s11277-022-09941-2

    Article  Google Scholar 

  24. Sharma, M. (2019). Superwideband triple notch monopole antenna for multiple wireless applications. Wireless Personal Communications, 104(1), 459–470. https://doi.org/10.1007/s11277-018-6030-9

    Article  Google Scholar 

  25. Zhong, S. S., Liu, J., Hay, S. G., & Esselle, K. P. (2013). Compact super-wideband asymmetric monopole antenna with dual-branch feed for bandwidth enhancement. Electronics Letters, 49(8), 515–516. https://doi.org/10.1049/el.2012.4015

    Article  Google Scholar 

  26. Mishra, G., & Sahu, S. (2016). Compact circular patch antenna for SWB applications. In 2016 International conference on communication and signal processing (ICCSP) (pp. 0727–0730). IEEE. https://doi.org/10.1109/ICCSP.2016.7754240

  27. Singhal, S., & Singh, A. K. (2016). CPW-FED phi-shaped monopole antenna for super-wideband applications. Progress In Electromagnetics Research C, 64, 105–116. https://doi.org/10.2528/PIERC16022401

    Article  Google Scholar 

  28. Abdpour, S. S., Azadi-Tinat, N., Oraizi, H., & Ghalibafan, J. (2019). Design of WLAN/WiMAX band notch super-wideband microstrip fractal antennas. International Journal of Microwave and Wireless Technologies, 11(08), 844–850. https://doi.org/10.1017/S1759078719000540

    Article  Google Scholar 

  29. Gorai, A., & Ghatak, R. (2021). Binomial stub loaded compact Vivaldi antenna for superwideband applications. International Journal of Microwave and Wireless Technologies, 13(5), 463–468. https://doi.org/10.1017/S1759078720001257

    Article  Google Scholar 

Download references

Acknowledgements

The authors are immensely thankful to the Poornima University and Sant Longowal Institute of Engineering & Technology, Longowal, for providing research assistance and excellent lab facilities.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception, design, simulation and measurments. The first draft of the manuscript was written by Ashwini Kumar and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ashwini Kumar.

Ethics declarations

Conflict of interest

The authors declare that there is no financial or non-financial interests that are directly or indirectly related to the work submitted for publication.

Consent to Publish

All authors achieved consent to publish this manuscript and images in WPC.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, A. & Pharwaha, A.P.S. On the Development of Super-Wideband Sierpinski Triangular Fractal Antenna. Wireless Pers Commun 134, 119–131 (2024). https://doi.org/10.1007/s11277-024-10890-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-024-10890-1

Keywords

Navigation