[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A Comprehensive Review of Categorization and Perspectives on State-of-Charge Estimation Using Deep Learning Methods for Electric Transportation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Lithium-ion batteries are an excellent choice for electric transportation because of their high energy density, minimum self-discharge, and prolonged cycle life. The performance of electric transportation depends on the battery management system (BMS) for efficient functioning in vehicles. The state of charge (SOC) is one of the crucial BMS parameters to indicate the available charge in the vehicle. A reliable and accurate SOC prediction is crucial for an effective electric vehicle operation but SOC estimation is challenging since it depends on multiple variables including ambient temperature, battery age, charging, and discharging current. The data-driven techniques use an approach to run sophisticated algorithms on a vast quantity of measured battery data to understand its behavior. Lithium-ion battery state of charge assessment poses a complex difficulty. Temperature and aging affect the non-linear connection between voltage and SOC, accurate current measurement is an essential parameter that requires rigorous calibration to manage inaccuracies. Estimation is further complicated by hysteresis effects during charge and discharge cycles, different C-rate dependencies, and state of health parameters. To solve critical challenges, the paper highlights the recent advancements in model-based approaches, coulomb counting techniques, and machine learning methodologies. By summarizing the basic principles and presenting a comprehensive overview of SOC estimation through deep learning, the review paper aims to serve as a valuable resource for researchers, and practitioners in the field of battery management systems for electric transportation applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

No data is generated or used in the research work and all the necessary information is available in the manuscript.

References

  1. Saldaña, G., San-Martín, J. I., Zamora, I., Asensio, F. J., & Oñederra, O. (2019). Analysis of the current electric battery models for electric vehicle simulation. Energies, 12(14), 2750. https://doi.org/10.3390/en12142750

    Article  CAS  Google Scholar 

  2. Noura, N., Boulon, L., & Jemeï, S. (2020). A review of battery state of health estimation methods: Hybrid electric vehicle challenges. World Electric Vehicle Journal, 11, 1–20. https://doi.org/10.3390/wevj11040066

    Article  Google Scholar 

  3. Unterluggauer, T., Rich, J., Andersen, P. B., & Hashemi, S. (2022). Electric vehicle charging infrastructure planning for integrated transportation and power distribution networks: A review. eTransportation, 12, 100163. https://doi.org/10.1016/J.ETRAN.2022.100163

    Article  Google Scholar 

  4. Kumar, R., Bansal, K., Kumar, A., Yadav, J., Gupta, M. K., & Singh, V. K. (2021). Renewable energy adoption: Design, development, and assessment of solar tree for the mountainous region. International Journal of Energy Research, 42(2), 1–17. https://doi.org/10.1002/er.7197

    Article  Google Scholar 

  5. Lyu, P., et al. (2020). Recent advances of thermal safety of lithium ion battery for energy storage. Energy Storage Materials, 31, 195–220. https://doi.org/10.1016/j.ensm.2020.06.042

    Article  Google Scholar 

  6. Chang, C., et al. (2022). Prognostics of the state of health for lithium-ion battery packs in energy storage applications. Energy, 239, 122189. https://doi.org/10.1016/J.ENERGY.2021.122189

    Article  CAS  Google Scholar 

  7. Rajak, R., Kumar, S., Prakash, S., Rajak, N., & Dixit, P. (2023). A novel technique to optimize quality of service for directed acyclic graph (DAG) scheduling in cloud computing environment using heuristic approach. The Journal of Supercomputing, 79, 1956–1979. https://doi.org/10.1007/s11227-022-04729-4

    Article  Google Scholar 

  8. Zhang, Y. Z., Xiong, R., He, H. W., Qu, X., & Pecht, M. (2019). Aging characteristics-based health diagnosis and remaining useful life prognostics for lithium-ion batteries. eTransportation, 1, 100004. https://doi.org/10.1016/J.ETRAN.2019.100004

    Article  Google Scholar 

  9. Kumar, R., Pachauri, R. K., Badoni, P., Bharadwaj, D., Mittal, U., & Bisht, A. (2022). Investigation on parallel hybrid electric bicycle along with issuer management system for mountainous region. Journal of Cleaner Production, 362, 132430. https://doi.org/10.1016/j.jclepro.2022.132430

    Article  Google Scholar 

  10. Das, K., & Kumar, R. (2023). Assessment of electric two-wheeler ecosystem using novel pareto optimality and TOPSIS methods for an ideal design solution. World Electric Vehicle Journal, 14, 215. https://doi.org/10.3390/wevj14080215

    Article  Google Scholar 

  11. Krewer, U., Röder, F., Harinath, E., Braatz, R. D., Bedürftig, B., & Findeisen, R. (2018). Review—dynamic models of Li-ion batteries for diagnosis and operation: a review and perspective. Journal of the Electrochemical Society, 165, A3656–A3673. https://doi.org/10.1149/2.1061814jes

    Article  CAS  Google Scholar 

  12. Singh, A., Prakash, S., & Singh, S. (2022). Optimization of reinforcement routing for wireless mesh network using machine learning and high-performance computing. Concurrency and Computation: Practice and Experience, 34, e6960. https://doi.org/10.1002/cpe.6960

    Article  Google Scholar 

  13. Wu, X., Li, M., Du, J., & Hu, F. (2022). SOC prediction method based on battery pack aging and consistency deviation of thermoelectric characteristics. Energy Reports, 8, 2262–2272. https://doi.org/10.1016/j.egyr.2022.01.056

    Article  Google Scholar 

  14. Wang, S. L., Fernandez, C., Zou, C. Y., Yu, C. M., Chen, L., & Zhang, L. (2019). A comprehensive working state monitoring method for power battery packs considering state of balance and aging correction. Energy, 171, 444–455. https://doi.org/10.1016/j.energy.2019.01.020

    Article  Google Scholar 

  15. Vidal, C., Malysz, P., Naguib, M., Emadi, A., & Kollmeyer, P. J. (2022). Estimating battery state of charge using recurrent and non-recurrent neural networks. J. Energy Storage, 47, 103660. https://doi.org/10.1016/j.est.2021.103660

    Article  Google Scholar 

  16. Das, K., Kumar, R., & Krishna, A. (2023). Supervised learning and data intensive methods for the prediction of capacity fade of lithium-ion batteries under diverse operating and environmental conditions. Water and Energy International, 66(1), 53–59.

    Google Scholar 

  17. Deng, K., et al. (2021). An adaptive PMP-based model predictive energy management strategy for fuel cell hybrid railway vehicles. eTransportation, 7, 100094. https://doi.org/10.1016/j.etran.2020.100094

    Article  Google Scholar 

  18. Kumar, R., Kumar, A., Gupta, M. K., Yadav, J., & Jain, A. (2022). Solar tree-based water pumping for assured irrigation in sustainable Indian agriculture environment. Sustainable Production and consumption, 33, 15–27. https://doi.org/10.1016/j.spc.2022.06.013

    Article  Google Scholar 

  19. Yang, S., Zhang, C., Jiang, J., Zhang, W., Zhang, L., & Wang, Y. (2021). Review on state-of-health of lithium-ion batteries: Characterizations, estimations and applications. Journal of Cleaner Production, 314, 128015. https://doi.org/10.1016/J.JCLEPRO.2021.128015

    Article  CAS  Google Scholar 

  20. Ren, X., Liu, S., Yu, X., & Dong, X. (2021). A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM. Energy, 234, 121236. https://doi.org/10.1016/j.energy.2021.121236

    Article  Google Scholar 

  21. Kumar, R., Ahuja, N. J., Saxena, M., & Kumar, A. (2016). Modelling and simulation of object detection in automotive power window. Indian Journal of Science and Technology. https://doi.org/10.17485/ijst/2016/v9i43/104393

    Article  Google Scholar 

  22. Almaita, E., Alshkoor, S., Abdelsalam, E., & Almomani, F. (2022). State of charge estimation for a group of lithium-ion batteries using long short-term memory neural network. Journal of Energy Storage, 52, 104761. https://doi.org/10.1016/j.est.2022.104761

    Article  Google Scholar 

  23. Unhelkar, B., Joshi, S., Sharma, M., Prakash, S., Mani, A. K., & Prasad, M. (2022). Enhancing supply chain performance using RFID technology and decision support systems in the industry 4.0–A systematic literature review. International Journal of Information Management Data Insights, 2, 100084. https://doi.org/10.1016/J.JJIMEI.2022.100084

    Article  Google Scholar 

  24. Agrawal, A., Ghune, N., Prakash, S., & Ramteke, M. (2021). Evolutionary algorithm hybridized with local search and intelligent seeding for solving multi-objective Euclidian TSP. Expert Systems with Applications, 181, 115192. https://doi.org/10.1016/J.ESWA.2021.115192

    Article  Google Scholar 

  25. Liu, T., Yang, X.-G., Ge, S., Leng, Y., & Wang, C.-Y. (2021). Ultrafast charging of energy-dense lithium-ion batteries for urban air mobility. ETransportation, 7, 100103. https://doi.org/10.1016/j.etran.2021.100103

    Article  Google Scholar 

  26. Almeida, G. C. S., de Souza, A. C. Z., & Ribeiro, P. F. (2020). A neural network application for a lithium-ion battery pack state-of-charge estimator with enhanced accuracy (p. 33) (2020). https://doi.org/10.3390/wef-06915

  27. Hong, J., Wang, Z., Chen, W., Wang, L. Y., & Qu, C. (2020). Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles. Journal of Energy Storage, 30, 1–21. https://doi.org/10.1016/j.est.2020.101459

    Article  Google Scholar 

  28. Wang, Z., Li, X., & Wang, Y. (2021). State of charge estimation of lithium-ion battery based on improved recurrent neural network. Journal of Physics: Conference Series, 2109, 7323–7332. https://doi.org/10.1088/1742-6596/2109/1/012005

    Article  Google Scholar 

  29. Bonfitto, A., Feraco, S., Tonoli, A., Amati, N., & Monti, F. (2019). Estimation accuracy and computational cost analysis of artificial neural networks for state of charge estimation in lithium batteries. Batteries, 5, 47. https://doi.org/10.3390/batteries5020047

    Article  CAS  Google Scholar 

  30. Herle, A., Channegowda, J., & Prabhu, D. (2020) A temporal convolution network approach to state-of-charge estimation in li-ion batteries. In 2020 IEEE 17th India Council International Conference INDICON 2020, no. 1. https://doi.org/10.1109/INDICON49873.2020.9342315.

  31. Ali, M. U., et al. (2022). An adaptive state of charge estimator for lithium-ion batteries. Energy Science & Engineering. https://doi.org/10.1002/ese3.1141

    Article  Google Scholar 

  32. Dhawankar, P., et al. (2021). Next-generation indoor wireless systems: compatibility and migration case study. IEEE Access, 9, 156915–156929. https://doi.org/10.1109/ACCESS.2021.3126827

    Article  Google Scholar 

  33. Chen, Z., Zhao, H., Shu, X., Zhang, Y., Shen, J., & Liu, Y. (2021). Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter. Energy, 228, 120630. https://doi.org/10.1016/j.energy.2021.120630

    Article  Google Scholar 

  34. Das, A. S., Dwivedi, P. K., Mondal, A. K., Kumar, R., Reddy, R. M., & Kumar, A. (2017). Storage optimization of automated storage and retrieval systems using breadth-first search algorithm. In Proceedings of the international conference on nano-electronics, circuits & communication systems (pp. 229–238). Springer. https://doi.org/10.1007/978-981-10-2999-8_18.

  35. You, H., Zhu, J., Wang, X., Jiang, B., et al. (2022). Nonlinear health evaluation for lithium-ion battery within full-lifespan. Journal of Energy Chemistry, 72, 333–341. https://doi.org/10.1016/j.jechem.2022.04.013

    Article  CAS  Google Scholar 

  36. Singh, A., Singh, S., & Prakash, S. (2023). Critical comparative analysis and recommendation in MAC protocols for wireless mesh networks using multi-objective optimization and statistical testing. Wireless Personal Communications, 129, 2319–2344. https://doi.org/10.1007/s11277-023-10228-3

    Article  Google Scholar 

  37. How, D. N. T., Hannan, M. A., Lipu, M. S. H., Sahari, K. S. M., Ker, P. J., & Muttaqi, K. M. (2020). State-of-charge estimation of Li-ion battery in electric vehicles: A deep neural network approach. IEEE Transactions on Industry Applications, 56, 5565–5574. https://doi.org/10.1109/TIA.2020.3004294

    Article  CAS  Google Scholar 

  38. Trivedi, V., Prakash, S., & Ramteke, M. (2017). Optimized on-line control of MMA polymerization using fast multi-objective DE. Materials and Manufacturing Processes, 32, 1144–1151. https://doi.org/10.1080/10426914.2016.1257802

    Article  CAS  Google Scholar 

  39. Prakash, S., Trivedi, V., & Ramteke, M. (2016). An elitist non-dominated sorting bat algorithm NSBAT-II for multi-objective optimization of phthalic anhydride reactor. International Journal of Systems Assurance Engineering and Management, 7, 299–315. https://doi.org/10.1007/s13198-016-0467-6

    Article  Google Scholar 

  40. Li, X., Yuan, C., & Wang, Z. (2020). Multi-time-scale framework for prognostic health condition of lithium battery using modified Gaussian process regression and nonlinear regression. Journal of Power Sources, 467, 228358. https://doi.org/10.1016/j.jpowsour.2020.228358

    Article  CAS  Google Scholar 

  41. Cadini, F., Sbarufatti, C., Cancelliere, F., & Giglio, M. (2019). State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters. Applied Energy, 235(2018), 661–672. https://doi.org/10.1016/j.apenergy.2018.10.095

    Article  ADS  Google Scholar 

  42. Che, Y., Deng, Z., Tang, X., Lin, X., Nie, X., & Hu, X. (2022). Lifetime and aging degradation prognostics for lithium-ion battery packs based on a cell to pack method. Chinese Journal of Mechanical Engineering (English Edition), 35, 1–16. https://doi.org/10.1186/s10033-021-00668-y

    Article  ADS  CAS  Google Scholar 

  43. Srivastava, S., Kumar, A., Singh, A., Prakash, S., & Kumar, A. (2022). An improved approach towards biometric face recognition using artificial neural network. Multimedia Tools and Applications, 81, 8471–8497. https://doi.org/10.1007/s11042-021-11721-2

    Article  Google Scholar 

  44. Cong, X., Zhang, C., Jiang, J., Zhang, W., & Jiang, Y. (2020). A hybrid method for the prediction of the remaining useful life of lithium-ion batteries with accelerated capacity degradation. IEEE Transactions on Vehicular Technology, 69, 12775–12785. https://doi.org/10.1109/TVT.2020.3024019

    Article  Google Scholar 

  45. Hannan, M. A., et al. (2021). Deep learning approach towards accurate state of charge estimation for lithium-ion batteries using self-supervised transformer model. Science and Reports, 11, 19541. https://doi.org/10.1038/s41598-021-98915-8

    Article  ADS  CAS  Google Scholar 

  46. Kumar, C., Bharti, T. S., & Prakash, S. (2023). A hybrid data-driven framework for spam detection in online social network. Procedia Comput. Sci., 218, 124–132. https://doi.org/10.1016/j.procs.2022.12.408

    Article  Google Scholar 

  47. Kumar, R., Dwivedi, P. K., Praveen Reddy, D., & Das, A. S. (2014). Design and implementation of hydraulic motor based elevator system. In 2014 IEEE 6th India international conference on power electronics (IICPE), Kurukshetra, India (pp. 1–6). https://doi.org/10.1109/IICPE.2014.7115821.

  48. Guo, J., Li, Z., & Li, M. (2020). A review on prognostics methods for engineering systems. IEEE Transactions on Reliability, 69, 1110–1129. https://doi.org/10.1109/TR.2019.2957965

    Article  Google Scholar 

  49. Severson, K. A., et al. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 4(5), 383–391. https://doi.org/10.1038/s41560-019-0356-8

    Article  ADS  Google Scholar 

  50. Lyu, Z., Wang, G., & Gao, R. (2021). Li-ion battery prognostic and health management through an indirect hybrid model. Journal of Energy Storage, 42, 102990. https://doi.org/10.1016/J.EST.2021.102990

    Article  Google Scholar 

  51. Tran, M. K., & Fowler, M. (2020). A review of lithium-ion battery fault diagnostic algorithms: Current progress and future challenges. Algorithms, 13, 62. https://doi.org/10.3390/a13030062

    Article  Google Scholar 

  52. Kumar, R., Ahuja, N. J., Saxena, M., & Kumar, A. (2020). Automotive power window communication with DTC algorithm and hardware-in-the loop testing. Wireless Personal Communications, 114, 3351–3366. https://doi.org/10.1007/s11277-020-07535-4

    Article  Google Scholar 

  53. Kumar, A., Bansal, K., Kumar, D., Devrari, A., Kumar, R., & Mani, P. (2020). FPGA application for wireless monitoring in power plant. Nuclear Engineering and Technology, 53, 1167–1175. https://doi.org/10.1016/j.net.2020.09.003

    Article  CAS  Google Scholar 

  54. Gupta, M. K., Kumar, R., Verma, V., & Sharma, A. (2021). Robust control based stability analysis and trajectory tracking of triple link robot manipulator. J. Eur. Systèmes Autom, 54, 641–647. https://doi.org/10.18280/jesa.540414

    Article  Google Scholar 

  55. Kumar, R., Divyanshu, & Kumar, A. (2021). Nature based self-learning mechanism and simulation of automatic control smart hybrid antilock braking system. Wireless Personal Communications, 116, 3291–3308. https://doi.org/10.1007/s11277-020-07853-7

    Article  Google Scholar 

  56. Dubarry, M., & Baure, G. (2020). Perspective on commercial Li-ion battery testing, best practices for simple and effective protocols. Electronics, 9, 152. https://doi.org/10.3390/electronics9010152

    Article  CAS  Google Scholar 

  57. Rajak, N., Rajak, R., & Prakash, S. (2022). A workflow scheduling method for cloud computing platform. Wireless Personal Communications, 126, 3625–3647. https://doi.org/10.1007/s11277-022-09882-w

    Article  Google Scholar 

  58. Edge, J. S., et al. (2021). Lithium ion battery degradation: What you need to know. Physical Chemistry Chemical Physics: PCCP, 23, 8200–8221. https://doi.org/10.1039/d1cp00359c

    Article  ADS  CAS  PubMed  Google Scholar 

  59. Haidri, R. A., Alam, M., Shahid, M., Prakash, S., & Sajid, M. (2022). A deadline aware load balancing strategy for cloud computing. Concurrency and Computation: Practice and Experience, 34, e6496. https://doi.org/10.1002/cpe.6496

    Article  Google Scholar 

  60. Li, W., Limoge, D. W., Zhang, J., Sauer, D. U., & Annaswamy, A. M. (2021). Estimation of potentials in lithium-ion batteries using machine learning models. IEEE Transactions on Control Systems Technology, 30, 680–695. https://doi.org/10.1109/TCST.2021.3071643

    Article  Google Scholar 

  61. Ansean, D., et al. (2019). Lithium-ion battery degradation indicators via incremental capacity analysis. IEEE Transactions on Industry Applications, 55, 2992–3002. https://doi.org/10.1109/TIA.2019.2891213

    Article  CAS  Google Scholar 

  62. Barai, A., et al. (2019). A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells. Progress in Energy and Combustion Science, 72, 1–31. https://doi.org/10.1016/j.pecs.2019.01.001

    Article  MathSciNet  Google Scholar 

  63. Ma, Y., Shan, C., Gao, J., & Chen, H. (2022). A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction. Energy, 251, 123973. https://doi.org/10.1016/j.energy.2022.123973

    Article  Google Scholar 

  64. Armand, M., et al. (2020). Lithium-ion batteries—Current state of the art and anticipated developments. Journal of Power Sources, 479, 228708. https://doi.org/10.1016/j.jpowsour.2020.228708

    Article  CAS  Google Scholar 

  65. Meng, H., & Li, Y. F. (2019). A review on prognostics and health management (PHM) methods of lithium-ion batteries. Renewable and Sustainable Energy Reviews, 116, 109405. https://doi.org/10.1016/j.rser.2019.109405

    Article  CAS  Google Scholar 

  66. Liu, D., et al. (2019). Review of recent development of in situ/operando characterization techniques for lithium battery research. Advanced Materials, 31, 1–57. https://doi.org/10.1002/adma.201806620

    Article  CAS  Google Scholar 

  67. Bian, X., Liu, L., & Yan, J. (2019). A model for state-of-health estimation of lithium ion batteries based on charging profiles. Energy, 177, 57–65. https://doi.org/10.1016/J.ENERGY.2019.04.070

    Article  CAS  Google Scholar 

  68. Kaiwartya, O., et al. (2018). virtualization in wireless sensor networks: Fault tolerant embedding for internet of things. IEEE Internet of Things Journal, 5, 571–580. https://doi.org/10.1109/JIOT.2017.2717704

    Article  Google Scholar 

  69. Pal, A., Kumar, R., & Kumar, V. R. S. (2015). Conceptual design of an automatic fluid level controller for aerospace applications. In 2015 international conference on soft-computing and networks security (ICSNS) (pp. 1–8). https://doi.org/10.1109/ICSNS.2015.7292433.

  70. Yadav, J., Kurre, S. K., Kumar, A., & Kumar, R. (2021). Nonlinear dynamics of controlled release mechanism under boundary friction. Results Engineering, 11, 100265. https://doi.org/10.1016/j.rineng.2021.100265

    Article  Google Scholar 

  71. Yadav, R., et al. (2021). Smart healthcare: RL-based task offloading scheme for edge-enable sensor networks. IEEE Sensors Journal, 21, 24910–24918. https://doi.org/10.1109/JSEN.2021.3096245

    Article  ADS  Google Scholar 

  72. Baure, G., & Dubarry, M. (2019). Synthetic vs. real driving cycles: A comparison of electric vehicle battery degradation. Batteries, 5, 42. https://doi.org/10.3390/BATTERIES5020042

    Article  CAS  Google Scholar 

  73. Liu, Y., Zhang, C., Jiang, J., Zhang, L., Zhang, W., et al. (2022). Deduction of the transformation regulation on voltage curve for lithium-ion batteries and its application in parameters estimation. eTransportation, 12, 100164. https://doi.org/10.1016/j.etran.2022.100164

    Article  Google Scholar 

  74. Kumar, R., Ahuja, N. J., & Saxena, M. (2018). Improvement and approval of impediment recognition and activity for power window. In Intelligent communication, control and devices: Proceedings of ICICCD 2017, (pp. 855–864). https://doi.org/10.1007/978-981-10-5903-2_89

  75. Khaleghi, S., et al. (2022). Developing an online data-driven approach for prognostics and health management of lithium-ion batteries. Applied Energy, 308, 118348. https://doi.org/10.1016/J.APENERGY.2021.118348

    Article  Google Scholar 

  76. Kong, J., Yang, F., Zhang, X., Pan, E., Peng, Z., & Wang, D. (2021). Voltage-temperature health feature extraction to improve prognostics and health management of lithium-ion batteries. Energy, 223, 120114. https://doi.org/10.1016/j.energy.2021.120114

    Article  Google Scholar 

  77. Hong, S., Hwang, H., Kim, D., Cui, S., & Joe, I. (2021). Real driving cycle-based state of charge prediction for ev batteries using deep learning methods. Applied Sciences, 11, 11285. https://doi.org/10.3390/app112311285

    Article  CAS  Google Scholar 

  78. Singh, A., Prakash, S., Kumar, A., & Kumar, D. (2022). A proficient approach for face detection and recognition using machine learning and high-performance computing. Concurrency and Computation: Practice and Experience, 34, e6582. https://doi.org/10.1002/cpe.6582

    Article  Google Scholar 

Download references

Acknowledgements

The University of Petroleum and Energy Studies, India, provided a state-of-the-art electric and hybrid vehicle laboratory facility for the authors to ideate, execute, and evaluate the performance of the system.

Funding

No funding received from any private or public organizations.

Author information

Authors and Affiliations

Authors

Contributions

KD: Formal analysis, collected the data, wrote the draft paper and RK: Conceived idea, analysis, contributed data, final paper writing and revision.

Corresponding author

Correspondence to Roushan Kumar.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest regarding this manuscript.

Consent for publication

All the authors mutually agreed to publish in the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K., Kumar, R. A Comprehensive Review of Categorization and Perspectives on State-of-Charge Estimation Using Deep Learning Methods for Electric Transportation. Wireless Pers Commun 133, 1599–1618 (2023). https://doi.org/10.1007/s11277-023-10830-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10830-5

Keywords

Navigation