Abstract
In this paper, a new memristor-less fractional-order meminductor emulator has been presented based on two operational transconductance amplifiers (OTAs), and a current differencing buffered amplifier (CDBA). The integer and fractional capacitors have been utilized in the proposed design of floating and grounded types. It also offers the freedom of conversion between incremental and decremental in both the types i.e., grounded, and floating. The pinched hysteresis loops have been obtained up to 3 MHz for both incremental and decremental setups of the proposed fractional-order meminductor emulator. The simulation results were achieved using the LTSpice tool with 180 nm CMOS technology specifications. The suggested meminductor emulator's performance has also been compared to that of existing emulators reported in the literature. To test the effectiveness of the suggested fractional-order meminductor emulator, an adaptive learning circuit has been simulated.
Similar content being viewed by others
Data Availability
Not applicable.
Code Availability
Not Applicable.
References
G. Tsirimokou, C. Psychalinos, A. Elwakil, “Design of CMOS Analog Integrated Fractional-Order Circuits: Applications in Medicine and Biology, Springer Briefs in Electrical and Computer Engineering (2017),” ISBN 978–3–319–55633–8.
Haba, T. C., Ablart, G., Camps, T., & Olivie, F. (2005). Influence of the electrical parameters on the input impedance of a fractal structure realized on silicon. Chaos, Solitons & Fractals, 24(2), 479–490.
Jesus, I. S., & Machado, J. A. (2009). Development of fractional order capacitors based on electrolytic process. Nonlinear Dynamics, 56(1), 45–55.
Biswas, K., Sen, S., & Dutta, P. (2006). Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Transactions Circuits System II Express Briefs, 53(9), 802–806.
Mondal, D., & Biswas, K. (2011). Performance study of fractional order integrator using single component fractional order elements. IET Circuits, Devices and Systems, 5(4), 334–342.
Krishna, M. S., Das, S., Biswas, K., & Goswami, B. (2011). Fabrication of a fractional - order capacitor with desired specifications: A study on process identification and characterization. IEEE Transactions on Electron Devices, 58(11), 4067–4073.
Elshurafa, A. M., Almadhoun, M. N., Salama, K. N., & Alshareef, H. N. (2013). Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Applied Physics Letters, 102(23), 232901–232904.
Krestinskaya, O., Irmanova, A., & James, A. P. (2020). Memristors: Properties, Models, Materials. In A. James (Ed.), Deep Learning Classifiers with Memristive Networks. Cham: Modeling and Optimization in Science and Technologies, Springer.
Steiglitz, K. (1964). An RC impedance approximation to s^ (-1/2). IEEE Trans. Circuits Syst., 11(1), 160–161.
Roy, S. C. D. (1967). On the realization of a constant-argument immittance or fractional operator. IEEE Transactions Circuits System, 14(3), 264–274.
Valsa, J., & Vlach, J. (2013). RC models of a constant phase element. International Journal of Circuit Theory and Applications, 41(1), 59–67.
Maundy, B., Elwakil, A., & Gift, S. (2010). On a multivibrator that employs a fractional capacitor. Analog Integrated Circuits and Signal Processing, 62, 99. https://doi.org/10.1007/s10470-009-9329-3
Chua, L. O. (1971). Memristor—The missing circuit element. IEEE Transaction on Circuit Theory, 18(5), 507–519.
Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64, 209–223.
Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.
Tarasov, V. E. (2018). No nonlocality, no fractional derivative. Communications in Nonlinear Science and Numerical Simulation, 62, 157–163.
Ventra, M. D., Pershin, Y. V., & Chua, L. O. (2009). Circuit elements with memory: Memristors, memcapacitors, and meminductor. Proceedings of the IEEE, 97, 1717–1724.
Ventra, M. D., Pershin, Y. V., & Chua, L. O. (2009). Putting memory into circuit elements: Memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 97, 1371–1372.
Pershin, Y. V., & Ventra, M. D. (2009). Memristive circuits simulate memcapacitors and meminductors. Electronics Letters, 46, 517–518.
Biolek, D., & Biolkova, V. (2010). Mutator for transforming memristor into memcapacitor. Electronics Letters, 46, 1428–1429.
Pershin, Y. V., & Ventra, M. D. (2011). Emulation of floating memcapacitors and meminductors using current conveyors. Electronics Letters, 47, 243–244.
Yu, D. S., Liang, Y., Lu, H. H. C., & Hu, Y. H. (2014). Mutator for transferring a memristor emulator into meminductive and memcapacitive circuits. Chinese Physics B, 23, 070702.
M. P. Sah, R. K. Budhathoki, C. Yang and H. Kim, A mutator-based meminductor emulator circuit, 2014 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2014), pp. 2249–2252.
D. S. Yu, H. Chen and H. H. C. Lu, A meminductive circuit based on floating memristive emulator, 2013 IEEE International Symposium on Circuits and SystemsInt. Symp. Circuits and Systems (ISCAS) (IEEE, 2013), pp. 1692–1695.
Yu, D., Liang, Y., Lu, H. H., & Chua, L. O. (2014). A universal mutator for transformations among memristor, memcapacitor, and meminductor. IEEE Transactions Circuits System II, Express Briefs, 61, 758–762.
Wang, H., Wang, X., Li, C., & Chen, L. (2013). SPICE mutator model for transforming memristor into meminductor. Abstract Applied Analysis, 2013, 281675.
Yadav, N., Rai, S. K., & Pandey, R. (2021). New grounded and floating memristor-less meminductor emulators using VDTA and CDBA. Journal of Circuits, Systems and Computers. https://doi.org/10.1142/S0218126621502832
Vista, J., & Ranjan, A. (2019). High frequency meminductor emulator employing VDTA and its application. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39, 2020–2028.
Liang, Y., Chen, H., & Yu, D. S. (2014). A practical implementation of a floating memristor-less meminductor emulator. IEEE Transactions on Circuits and Systems II: Express Briefs, 61, 299–303.
Sah, M. P., Budhathoki, R. K., Yang, C., & Kim, H. (2014). Charge controlled meminductor emulator. Journal of Semiconductor Technology Science, 14, 750–754.
M. E. Fouda and A. G. Radwan, “Memristor-less current-and voltage-controlled meminductor emulators”, 2014 21st IEEE Int. Conf. Electronics, Circuits and Systems (ICECS) (IEEE, 2014), pp. 279–282.
Fouda, M. E., & Radwan, A. G. (2014). Simple floating voltage-controlled memductor emulator for analog applications. Radioengineering, 23, 944–948.
Sozen, H., & Cam, U. (2020). A novel floating/grounded meminductor emulator. Journal of Circuits, Systems and Computers, 29, 2050247.
Abro, K. A., & Atangana, A. (2020). Mathematical analysis of memristor through fractal-fractional differential operators: A numerical study. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.6378
Yu, Y., Shi, M., Kang, H., et al. (2020). Hidden dynamics in a fractional-order memristive Hindmarsh-Rose model. Nonlinear Dynamics, 100, 891–906. https://doi.org/10.1007/s11071-020-05495-9
Wu, G. C., Luo, M., Huang, L. L., et al. (2020). Short memory fractional differential equations for new memristor and neural network design. Nonlinear Dynamics, 100, 3611–3623. https://doi.org/10.1007/s11071-020-05572-z
Qi, Y., Wu, C., Zhang, Q., Yan, K., & Wang, H. (2021, March). Complex dynamics behavior analysis of a new chaotic system based on fractional-order memristor. In Journal of Physics: Conference Series (Vol. 1861, No. 1, p. 012114). IOP Publishing.
Khalil, N. A., Hezayyin, H. G., Said, L. A., Madian, A. H., & Radwan, A. G. (2021). Active emulation circuits of fractional-order memristive elements and its applications. International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2021.153855
Wang, S. F., & Ye, A. (2020). Dynamical properties of fractional-order memristor. Symmetry, 12(3), 437. https://doi.org/10.3390/sym12030437
Fie, Y., Pu, BYu., & Yuan, X. (2021). "Ladder scaling fracmemristor: A second emerging circuit structure of fractional-order memristor. In IEEE Design & Test, 38(3), 104–111. https://doi.org/10.1109/MDAT.2020.3013826
N. A. Khalil, M. E. Fouda, L. A. Said, A. G. Radwan and A. M. Soliman, "Fractional-order Memristor Emulator with Multiple Pinched Points," 2020 32nd International Conference on Microelectronics (ICM), 2020, pp. 1–4, doi: https://doi.org/10.1109/ICM50269.2020.9331791.
Abdelouahab, M.-S., Lozi, R., & Chua, L. (2014). Memfractance: A mathematical paradigm for circuit elements with memory. Int J Bifurc Chaos, 24(9), 1430023.
Borah, M., & Roy, B. K. (2021). Hidden multistability in four fractional-order memristive, meminductive and memcapacitive chaotic systems with bursting and boosting phenomena. European Physical Journal Special Topics, 230, 1773–1783. https://doi.org/10.1140/epjs/s11734-021-00179-w
Abro, K. A., & Atangana, A. (2021). Numerical study and chaotic analysis of meminductor and memcapacitor through fractal-fractional differential operator. Arabian Journal for Science and Engineering, 46, 857–871. https://doi.org/10.1007/s13369-020-04780-4
Petráš and Y. Chen, "Fractional-order circuit elements with memory," Proceedings of the 13th International Carpathian Control Conference (ICCC), 2012, pp. 552–558, doi: https://doi.org/10.1109/CarpathianCC.2012.6228706.
Khalil, N., Fouda, M. E., Said, L., Radwan, A., & Soliman, A. M. (2020). A General Emulator for Fractional-Order Memristive Elements with Multiple Pinched Points and Application. AEU - International Journal of Electronics and Communications., 124, 153338. https://doi.org/10.1016/j.aeue.2020.153338
Khalil, N., Said, L., Radwan, A., & Soliman, A. M. (2020). Emulation circuits of fractional-order memelements with multiple pinched points and their applications. Chaos Solitons & Fractals., 138, 109882. https://doi.org/10.1016/j.chaos.2020.109882
Meng, L., Zhaohui, G., & Shiying, Z. (2019). Analysis of amplitude-frequency characteristics of fractional-order current-controlled meminductor. Journal of System Simulation, 31(6), 1179.
Khalil, N., Said, L., Radwan, A., & Soliman, A. M. (2019). General fractional order mem-elements mutators. Microelectronics Journal. https://doi.org/10.1016/j.mejo.2019.05.018
Khalil, N. A., Said, L. A., Radwan, A. G., & Soliman, A. M. (2019). A universal floating fractional-order elements/memelements emulator. Novel Intelligent and Leading Emerging Sciences Conference (NILES), 2019, 80–83. https://doi.org/10.1109/NILES.2019.8909296
Khalil, N. A., Fouda, M. E., Said, L. A., Radwan, A. G., & Soliman, A. M. (2019). A universal fractional-order memelement emulation circuit. Novel Intelligent and Leading Emerging Sciences Conference (NILES), 2019, 67–70. https://doi.org/10.1109/NILES.2019.8909307
Carlson, G. E., & Halijak, C. A. (1964). Approximation of fractional capacitors (1/s) ^(1/n) by a regular Newton process. IEEE Trans. Circuit Theory., 11(2), 210–213.
Yadav, N., Rai, S. K., & Pandey, R. (2020). New grounded and floating memristor emulators using OTA and CDBA. Int J Circ Theor Appl., 48, 1154–1179. https://doi.org/10.1002/cta.2774
Acar, C., & Ozoguz, S. (1999). A new versatile building block: Current differencing buffered amplifier suitable for analog signal-processing filters. Microelectronics Journal, 30, 157–160. https://doi.org/10.1016/S0026-2692(98)00102-5
Metin, B., Pal, K., & Cicekoglu, O. (2011). CMOS-controlled inverting CDBA with a new all-pass filter application. International Journal of Circuit Theory and Applications, 39(4), 417–425.
Hartley, T. T., & Lorenzo, C. F. (1998). “A solution to the fundamental linear fractional order differential equation.” Raport instytutowy 208693, National Aeronautics and Space Administration (NASA).
P.L. Butzer, U. Westphal, “An introduction to fractional calculus, in: Applications of Fractional Calculus in Physics”, World Scientific, 2000, pp. 1–85.
B.M. Vinagre, I. Podlubny, V. Feliu, Some approximations of fractional order operators used in control theory and applications, Journal of Fractional Calculus and Applied Analysis (2000).
Krishna, B. T., & Reddy, K. V. V. S. (2008). Active and Passive Realization of Fractance Device of Order 1/2. Active and Passive Electronic Components, 369421(5), 2008. https://doi.org/10.1155/2008/369421
Pershin, Y. V., La Fontaine, S., & Di Ventra, M. (2009). Memristive model of amoeba learning. Physical Review E, 80, 021926.
Pershin, Y. V., & Di Ventra, M. (2010). Experimental demonstration of associative memory with memristive neural networks. Neural Networks, 23, 881–886.
Wang, F. Z., Chua, L. O., Yang, X., Helian, N., Tetzlaff, R., Schmidt, T., Li, C., Carrasco, J. M. G., Chen, W., & Chu, D. (2013). Adaptive neuromorphic architecture (ANA). Neural Networks, 45, 111–116.
Funding
Not Applicable.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gupta, A., Rai, S.K. & Gupta, M. A Fractional-Order Meminductor Emulator Using OTA and CDBA with Application in Adaptive Learning Circuit. Wireless Pers Commun 131, 2675–2696 (2023). https://doi.org/10.1007/s11277-023-10566-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-023-10566-2