[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Fractional-Order Meminductor Emulator Using OTA and CDBA with Application in Adaptive Learning Circuit

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a new memristor-less fractional-order meminductor emulator has been presented based on two operational transconductance amplifiers (OTAs), and a current differencing buffered amplifier (CDBA). The integer and fractional capacitors have been utilized in the proposed design of floating and grounded types. It also offers the freedom of conversion between incremental and decremental in both the types i.e., grounded, and floating. The pinched hysteresis loops have been obtained up to 3 MHz for both incremental and decremental setups of the proposed fractional-order meminductor emulator. The simulation results were achieved using the LTSpice tool with 180 nm CMOS technology specifications. The suggested meminductor emulator's performance has also been compared to that of existing emulators reported in the literature. To test the effectiveness of the suggested fractional-order meminductor emulator, an adaptive learning circuit has been simulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not Applicable.

References

  1. G. Tsirimokou, C. Psychalinos, A. Elwakil, “Design of CMOS Analog Integrated Fractional-Order Circuits: Applications in Medicine and Biology, Springer Briefs in Electrical and Computer Engineering (2017),” ISBN 978–3–319–55633–8.

  2. Haba, T. C., Ablart, G., Camps, T., & Olivie, F. (2005). Influence of the electrical parameters on the input impedance of a fractal structure realized on silicon. Chaos, Solitons & Fractals, 24(2), 479–490.

    Article  Google Scholar 

  3. Jesus, I. S., & Machado, J. A. (2009). Development of fractional order capacitors based on electrolytic process. Nonlinear Dynamics, 56(1), 45–55.

    Article  MATH  Google Scholar 

  4. Biswas, K., Sen, S., & Dutta, P. (2006). Realization of a constant phase element and its performance study in a differentiator circuit. IEEE Transactions Circuits System II Express Briefs, 53(9), 802–806.

    Article  Google Scholar 

  5. Mondal, D., & Biswas, K. (2011). Performance study of fractional order integrator using single component fractional order elements. IET Circuits, Devices and Systems, 5(4), 334–342.

    Article  Google Scholar 

  6. Krishna, M. S., Das, S., Biswas, K., & Goswami, B. (2011). Fabrication of a fractional - order capacitor with desired specifications: A study on process identification and characterization. IEEE Transactions on Electron Devices, 58(11), 4067–4073.

    Article  Google Scholar 

  7. Elshurafa, A. M., Almadhoun, M. N., Salama, K. N., & Alshareef, H. N. (2013). Microscale electrostatic fractional capacitors using reduced graphene oxide percolated polymer composites. Applied Physics Letters, 102(23), 232901–232904.

    Article  Google Scholar 

  8. Krestinskaya, O., Irmanova, A., & James, A. P. (2020). Memristors: Properties, Models, Materials. In A. James (Ed.), Deep Learning Classifiers with Memristive Networks. Cham: Modeling and Optimization in Science and Technologies, Springer.

    Google Scholar 

  9. Steiglitz, K. (1964). An RC impedance approximation to s^ (-1/2). IEEE Trans. Circuits Syst., 11(1), 160–161.

    Google Scholar 

  10. Roy, S. C. D. (1967). On the realization of a constant-argument immittance or fractional operator. IEEE Transactions Circuits System, 14(3), 264–274.

    Google Scholar 

  11. Valsa, J., & Vlach, J. (2013). RC models of a constant phase element. International Journal of Circuit Theory and Applications, 41(1), 59–67.

    Google Scholar 

  12. Maundy, B., Elwakil, A., & Gift, S. (2010). On a multivibrator that employs a fractional capacitor. Analog Integrated Circuits and Signal Processing, 62, 99. https://doi.org/10.1007/s10470-009-9329-3

    Article  Google Scholar 

  13. Chua, L. O. (1971). Memristor—The missing circuit element. IEEE Transaction on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  14. Chua, L. O., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64, 209–223.

    Article  MathSciNet  Google Scholar 

  15. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  16. Tarasov, V. E. (2018). No nonlocality, no fractional derivative. Communications in Nonlinear Science and Numerical Simulation, 62, 157–163.

    Article  MathSciNet  MATH  Google Scholar 

  17. Ventra, M. D., Pershin, Y. V., & Chua, L. O. (2009). Circuit elements with memory: Memristors, memcapacitors, and meminductor. Proceedings of the IEEE, 97, 1717–1724.

    Article  Google Scholar 

  18. Ventra, M. D., Pershin, Y. V., & Chua, L. O. (2009). Putting memory into circuit elements: Memristors, memcapacitors, and meminductors. Proceedings of the IEEE, 97, 1371–1372.

    Article  Google Scholar 

  19. Pershin, Y. V., & Ventra, M. D. (2009). Memristive circuits simulate memcapacitors and meminductors. Electronics Letters, 46, 517–518.

    Article  Google Scholar 

  20. Biolek, D., & Biolkova, V. (2010). Mutator for transforming memristor into memcapacitor. Electronics Letters, 46, 1428–1429.

    Article  Google Scholar 

  21. Pershin, Y. V., & Ventra, M. D. (2011). Emulation of floating memcapacitors and meminductors using current conveyors. Electronics Letters, 47, 243–244.

    Article  Google Scholar 

  22. Yu, D. S., Liang, Y., Lu, H. H. C., & Hu, Y. H. (2014). Mutator for transferring a memristor emulator into meminductive and memcapacitive circuits. Chinese Physics B, 23, 070702.

    Article  Google Scholar 

  23. M. P. Sah, R. K. Budhathoki, C. Yang and H. Kim, A mutator-based meminductor emulator circuit, 2014 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2014), pp. 2249–2252.

  24. D. S. Yu, H. Chen and H. H. C. Lu, A meminductive circuit based on floating memristive emulator, 2013 IEEE International Symposium on Circuits and SystemsInt. Symp. Circuits and Systems (ISCAS) (IEEE, 2013), pp. 1692–1695.

  25. Yu, D., Liang, Y., Lu, H. H., & Chua, L. O. (2014). A universal mutator for transformations among memristor, memcapacitor, and meminductor. IEEE Transactions Circuits System II, Express Briefs, 61, 758–762.

    Article  Google Scholar 

  26. Wang, H., Wang, X., Li, C., & Chen, L. (2013). SPICE mutator model for transforming memristor into meminductor. Abstract Applied Analysis, 2013, 281675.

    MATH  Google Scholar 

  27. Yadav, N., Rai, S. K., & Pandey, R. (2021). New grounded and floating memristor-less meminductor emulators using VDTA and CDBA. Journal of Circuits, Systems and Computers. https://doi.org/10.1142/S0218126621502832

    Article  Google Scholar 

  28. Vista, J., & Ranjan, A. (2019). High frequency meminductor emulator employing VDTA and its application. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39, 2020–2028.

    Article  Google Scholar 

  29. Liang, Y., Chen, H., & Yu, D. S. (2014). A practical implementation of a floating memristor-less meminductor emulator. IEEE Transactions on Circuits and Systems II: Express Briefs, 61, 299–303.

    Google Scholar 

  30. Sah, M. P., Budhathoki, R. K., Yang, C., & Kim, H. (2014). Charge controlled meminductor emulator. Journal of Semiconductor Technology Science, 14, 750–754.

    Article  Google Scholar 

  31. M. E. Fouda and A. G. Radwan, “Memristor-less current-and voltage-controlled meminductor emulators”, 2014 21st IEEE Int. Conf. Electronics, Circuits and Systems (ICECS) (IEEE, 2014), pp. 279–282.

  32. Fouda, M. E., & Radwan, A. G. (2014). Simple floating voltage-controlled memductor emulator for analog applications. Radioengineering, 23, 944–948.

    Google Scholar 

  33. Sozen, H., & Cam, U. (2020). A novel floating/grounded meminductor emulator. Journal of Circuits, Systems and Computers, 29, 2050247.

    Article  Google Scholar 

  34. Abro, K. A., & Atangana, A. (2020). Mathematical analysis of memristor through fractal-fractional differential operators: A numerical study. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.6378

    Article  MathSciNet  MATH  Google Scholar 

  35. Yu, Y., Shi, M., Kang, H., et al. (2020). Hidden dynamics in a fractional-order memristive Hindmarsh-Rose model. Nonlinear Dynamics, 100, 891–906. https://doi.org/10.1007/s11071-020-05495-9

    Article  MATH  Google Scholar 

  36. Wu, G. C., Luo, M., Huang, L. L., et al. (2020). Short memory fractional differential equations for new memristor and neural network design. Nonlinear Dynamics, 100, 3611–3623. https://doi.org/10.1007/s11071-020-05572-z

    Article  Google Scholar 

  37. Qi, Y., Wu, C., Zhang, Q., Yan, K., & Wang, H. (2021, March). Complex dynamics behavior analysis of a new chaotic system based on fractional-order memristor. In Journal of Physics: Conference Series (Vol. 1861, No. 1, p. 012114). IOP Publishing.

  38. Khalil, N. A., Hezayyin, H. G., Said, L. A., Madian, A. H., & Radwan, A. G. (2021). Active emulation circuits of fractional-order memristive elements and its applications. International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2021.153855

    Article  Google Scholar 

  39. Wang, S. F., & Ye, A. (2020). Dynamical properties of fractional-order memristor. Symmetry, 12(3), 437. https://doi.org/10.3390/sym12030437

    Article  Google Scholar 

  40. Fie, Y., Pu, BYu., & Yuan, X. (2021). "Ladder scaling fracmemristor: A second emerging circuit structure of fractional-order memristor. In IEEE Design & Test, 38(3), 104–111. https://doi.org/10.1109/MDAT.2020.3013826

    Article  Google Scholar 

  41. N. A. Khalil, M. E. Fouda, L. A. Said, A. G. Radwan and A. M. Soliman, "Fractional-order Memristor Emulator with Multiple Pinched Points," 2020 32nd International Conference on Microelectronics (ICM), 2020, pp. 1–4, doi: https://doi.org/10.1109/ICM50269.2020.9331791.

  42. Abdelouahab, M.-S., Lozi, R., & Chua, L. (2014). Memfractance: A mathematical paradigm for circuit elements with memory. Int J Bifurc Chaos, 24(9), 1430023.

    Article  MATH  Google Scholar 

  43. Borah, M., & Roy, B. K. (2021). Hidden multistability in four fractional-order memristive, meminductive and memcapacitive chaotic systems with bursting and boosting phenomena. European Physical Journal Special Topics, 230, 1773–1783. https://doi.org/10.1140/epjs/s11734-021-00179-w

    Article  Google Scholar 

  44. Abro, K. A., & Atangana, A. (2021). Numerical study and chaotic analysis of meminductor and memcapacitor through fractal-fractional differential operator. Arabian Journal for Science and Engineering, 46, 857–871. https://doi.org/10.1007/s13369-020-04780-4

    Article  Google Scholar 

  45. Petráš and Y. Chen, "Fractional-order circuit elements with memory," Proceedings of the 13th International Carpathian Control Conference (ICCC), 2012, pp. 552–558, doi: https://doi.org/10.1109/CarpathianCC.2012.6228706.

  46. Khalil, N., Fouda, M. E., Said, L., Radwan, A., & Soliman, A. M. (2020). A General Emulator for Fractional-Order Memristive Elements with Multiple Pinched Points and Application. AEU - International Journal of Electronics and Communications., 124, 153338. https://doi.org/10.1016/j.aeue.2020.153338

    Article  Google Scholar 

  47. Khalil, N., Said, L., Radwan, A., & Soliman, A. M. (2020). Emulation circuits of fractional-order memelements with multiple pinched points and their applications. Chaos Solitons & Fractals., 138, 109882. https://doi.org/10.1016/j.chaos.2020.109882

    Article  MathSciNet  Google Scholar 

  48. Meng, L., Zhaohui, G., & Shiying, Z. (2019). Analysis of amplitude-frequency characteristics of fractional-order current-controlled meminductor. Journal of System Simulation, 31(6), 1179.

    Google Scholar 

  49. Khalil, N., Said, L., Radwan, A., & Soliman, A. M. (2019). General fractional order mem-elements mutators. Microelectronics Journal. https://doi.org/10.1016/j.mejo.2019.05.018

    Article  Google Scholar 

  50. Khalil, N. A., Said, L. A., Radwan, A. G., & Soliman, A. M. (2019). A universal floating fractional-order elements/memelements emulator. Novel Intelligent and Leading Emerging Sciences Conference (NILES), 2019, 80–83. https://doi.org/10.1109/NILES.2019.8909296

    Article  Google Scholar 

  51. Khalil, N. A., Fouda, M. E., Said, L. A., Radwan, A. G., & Soliman, A. M. (2019). A universal fractional-order memelement emulation circuit. Novel Intelligent and Leading Emerging Sciences Conference (NILES), 2019, 67–70. https://doi.org/10.1109/NILES.2019.8909307

    Article  Google Scholar 

  52. Carlson, G. E., & Halijak, C. A. (1964). Approximation of fractional capacitors (1/s) ^(1/n) by a regular Newton process. IEEE Trans. Circuit Theory., 11(2), 210–213.

    Article  Google Scholar 

  53. Yadav, N., Rai, S. K., & Pandey, R. (2020). New grounded and floating memristor emulators using OTA and CDBA. Int J Circ Theor Appl., 48, 1154–1179. https://doi.org/10.1002/cta.2774

    Article  Google Scholar 

  54. Acar, C., & Ozoguz, S. (1999). A new versatile building block: Current differencing buffered amplifier suitable for analog signal-processing filters. Microelectronics Journal, 30, 157–160. https://doi.org/10.1016/S0026-2692(98)00102-5

    Article  Google Scholar 

  55. Metin, B., Pal, K., & Cicekoglu, O. (2011). CMOS-controlled inverting CDBA with a new all-pass filter application. International Journal of Circuit Theory and Applications, 39(4), 417–425.

    Article  Google Scholar 

  56. Hartley, T. T., & Lorenzo, C. F. (1998). “A solution to the fundamental linear fractional order differential equation.” Raport instytutowy 208693, National Aeronautics and Space Administration (NASA).

  57. P.L. Butzer, U. Westphal, “An introduction to fractional calculus, in: Applications of Fractional Calculus in Physics”, World Scientific, 2000, pp. 1–85.

  58. B.M. Vinagre, I. Podlubny, V. Feliu, Some approximations of fractional order operators used in control theory and applications, Journal of Fractional Calculus and Applied Analysis (2000).

  59. Krishna, B. T., & Reddy, K. V. V. S. (2008). Active and Passive Realization of Fractance Device of Order 1/2. Active and Passive Electronic Components, 369421(5), 2008. https://doi.org/10.1155/2008/369421

    Article  Google Scholar 

  60. Pershin, Y. V., La Fontaine, S., & Di Ventra, M. (2009). Memristive model of amoeba learning. Physical Review E, 80, 021926.

    Article  Google Scholar 

  61. Pershin, Y. V., & Di Ventra, M. (2010). Experimental demonstration of associative memory with memristive neural networks. Neural Networks, 23, 881–886.

    Article  Google Scholar 

  62. Wang, F. Z., Chua, L. O., Yang, X., Helian, N., Tetzlaff, R., Schmidt, T., Li, C., Carrasco, J. M. G., Chen, W., & Chu, D. (2013). Adaptive neuromorphic architecture (ANA). Neural Networks, 45, 111–116.

    Article  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shireesh Kumar Rai.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Rai, S.K. & Gupta, M. A Fractional-Order Meminductor Emulator Using OTA and CDBA with Application in Adaptive Learning Circuit. Wireless Pers Commun 131, 2675–2696 (2023). https://doi.org/10.1007/s11277-023-10566-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10566-2

Keywords

Navigation