[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

DVCC Based (2 + α) Order Low Pass Bessel Filter Using Optimization Techniques

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposes the design and analysis of (2 + α) order low pass Bessel filter using different optimization techniques. The coefficients of the proposed filter are obtained by minimizing the error between transfer functions of (2 + α) order low pass filter and third-order Bessel approximation using simulated annealing (SA), interior search algorithm (ISA), and nonlinear least square (NLS) optimization techniques. The best optimization technique based on the error in gain, cut-off frequency, roll-off, passband, stopband, and phase is chosen for designing the proposed filter. The stability analysis of the proposed filter has also been done in W-plane. The simulated responses of the best optimized proposed filter are attained using the FOMCON toolbox of MATLAB and SPICE. The circuit realization of 2.5 order low pass Bessel filter is done using two DVCCs (differential voltage current conveyors), one generalized impedance converter (GIC) based inductor, and one fractional capacitor. The proposed filter is implemented for the cut-off frequency of 10 kHz using a wideband fractional capacitor. Monte Carlo and noise analyses are also performed for the proposed filter. The MATLAB and SPICE results are shown in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Code Availability

Not applicable.

References

  1. Elwakil, A. S. (2010). Fractional-order circuits and systems an emerging interdisciplinary research area. IEEE Circuits and Systems Magazine, 10, 40–50.

    Article  Google Scholar 

  2. Psychalinos, C., Elwakil, A. S., Radwan, A. G., & Biswas, K. (2016). Guest Editorial: Fractional order circuits and systems: Theory, design, and applications. Circuits Systems and Signal Processing, 35, 1807–1813.

    Article  MathSciNet  Google Scholar 

  3. Petras, I. (2009). Stability of fractional-order systems with rational orders. Fractional Calculus and Applied Analysis, 12(3). https://arxiv.org/abs/0811.4102.

  4. Radwan, A. G., Soliman, A. M., & Elwakil, A. S. (2008). First-order filters generalized to the fractional domain. Journal of Circuits, Systems, and Computers, 17, 55–66.

    Article  Google Scholar 

  5. Radwan, A. G., Elwakil, A. S., & Soliman, A. M. (2009). On the generalization of second-order filters to the fractional-order domain. Journal of Circuits, Systems, and Computers, 18, 361–386.

    Article  Google Scholar 

  6. Ali, A. S., Radwan, A. G., & Soliman, A. M. (2013). Fractional Order Butterworth Filter: Active and Passive Realizations. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 3(3), 346–354. https://doi.org/10.1109/JETCAS.2013.2266753

    Article  Google Scholar 

  7. Kubanek, D., & Freeborn, T. (2018). (1+α) Fractional-order transfer functions to approximate low-pass magnitude responses with arbitrary quality factor. International Journal of Electronics and Communication, 83, 570–578.

    Article  Google Scholar 

  8. Said, L. A., Ismail, S. M., Radwan, A. G., Madian, A. H., El-Yazeed, M. F. A., & Soliman, A. M. (2016). On the optimization of fractional order low pass filters. Circuits Systems and Signal Processing, 35, 2017–2039.

    Article  MathSciNet  Google Scholar 

  9. Mahata, S., Saha, S. K., Kar, R., & Mandal, D. (2018). Approximation of fractional-order low-pass filter. IET Signal Processing. https://doi.org/10.1049/iet-spr.2018.5128

    Article  Google Scholar 

  10. Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2015). Approximated fractional order chebyshev low pass filters. Hindawi Publishing Corporation. https://doi.org/10.1155/2015/832468

    Article  MATH  Google Scholar 

  11. Freeborn, T. J., Elwakil, A. S., & Maundy, B. (2016). Approximated fractional order inverse chebyshev low pass filters. Circuits Systems and Signal Processing, 35, 1973–1982.

    Article  MathSciNet  Google Scholar 

  12. Freeborn, T. J. (2016). Comparison of (1+α) fractional-order transfer functions to approximate low pass butterworth magnitude responses. Circuits Systems and Signal Processing, 35, 1983–2002.

    Article  MathSciNet  Google Scholar 

  13. Khanna, T., & Upadhyay, D. K. (2015). Design and realization of fractional order butterworth low pass filters. In: international conference on signal processing, computing and control (ISPCC).

  14. AbdelAty, A. M., Soltan, A., Ahmed, A. W., & Radwan, A. G. (2017). On the analysis and design of fractional –order chebyshev complex filter. Circuits Systems and Signal Processing. https://doi.org/10.1007/s00034-017-0570-1

    Article  MATH  Google Scholar 

  15. Soni, A., & Gupta, M. (2019). Performance evaluation of different order fractional chebyshev filters using optimization techniques. International Journal of Electronics letters. https://doi.org/10.1080/21681724.2019.1584915

    Article  Google Scholar 

  16. Mahata, S., Saha, S. K., Kar, R., & Mandal, D. (2018). Optimal design of fractional order low pass Butterworth filter with accurate magnitude response. Digital Signal Processing, 72, 96–114.

    Article  Google Scholar 

  17. Soni, A., & Gupta, M. (2021). Analysis and design of optimized fractional order low-pass bessel filter. Journal of Circuits, Systems and Computers. https://doi.org/10.1142/S0218126621500353

    Article  Google Scholar 

  18. Soni, A., & Gupta, M. (2021). Designing of fractional order bessel filter using optimization techniques. International Journal of Electronics letters. https://doi.org/10.1080/21681724.2020.1870715

    Article  Google Scholar 

  19. Catoni, O. (1996). Metropolis, simulated annealing, and iterated energy transformation algorithms: Theory and experiments. Journal of Complexity, 12(4), 595–623.

    Article  MathSciNet  Google Scholar 

  20. Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal of statistical physics, 34, 975–986.

    Article  MathSciNet  Google Scholar 

  21. Cerny, V. (1985). Thermodynamical approach to the travelling salesman problem: An efficient simulation algorithm. Journal of optimization theory and applications, 45, 41–51.

    Article  MathSciNet  Google Scholar 

  22. Henderson, D., Jacobson, S. H., & Johnson, A. W. (2003). The theory and practice of simulated annealing. Handbook of metaheuristics (pp. 287–319). Springer.

    Chapter  Google Scholar 

  23. Gandomi, A. H. (2014). Interior search algorithm (ISA): A novel approach for global optimization. ISA transactions, 53(4), 1168–1183.

    Article  Google Scholar 

  24. Kumar, R., Farkas, K., Jouppi, N. P., Ranganathan, P., & Tullsen, D. M. (2003). Processor power reduction via single-ISA heterogeneous multi-core architectures. IEEE Computer Architecture Letters, 2(1), 2–2.

    Article  Google Scholar 

  25. Coleman, T. F., & Li, Y. (1996). An interior trust region approach for nonlinear minimization subject to bounds. SIAM Journal on optimization, 6(2), 418–445.

    Article  MathSciNet  Google Scholar 

  26. Mohammad, H., Waziri, M. Y., & Santos, S. A. (2018). A brief survey of methods for solving nonlinear least-squares problems. Numerical Algebra, Control & Optimization, 9(1), 1–1.

    Article  MathSciNet  Google Scholar 

  27. Acharya, A., Das, S., Pan, I., & Das, S. (2013). Extending the concept of analog butterworth filter for fractional order systems. Signal Processing, 94, 409–420. https://doi.org/10.1016/j.sigpro.2013.07.012

    Article  Google Scholar 

  28. Soltan, A., Radwan, A. G., & Soliman, A. M. (2015). Fractional order sallen Key and KHN filters: Stability and poles allocation. Circuits Systems and Signal Processing, 34(5), 1461–1480. https://doi.org/10.1007/s00034-014-9925-z

    Article  MATH  Google Scholar 

  29. Radwan, A. G., Soliman, A. M., Elwakil, A. S., & Sedeek, A. (2009). On the stability of linear systems with fractional-order elements. Chaos, Solitons & Fractals, 40(5), 2317–2328.

    Article  Google Scholar 

  30. Choudhary, S. K. (2014). Stability and performance analysis of fractional order control systems. Wseas Transactions on Systems and Control, 9(45), 438–444.

    Google Scholar 

  31. Semary, M. S., Radwan, A. G., & Hassan, H. N. (2016). Fundamentals of fractional-order LTI circuits and systems: Number of poles, stability, time and frequency responses. International Journal of Circuit Theory and Applications, 44(12), 2114–2133.

    Article  Google Scholar 

  32. Sabatier, J., Moze, M., & Farges, C. (2010). LMI stability conditions for fractional order systems. Computers and Mathematics with Applications, 59(5), 1594–1609.

    Article  MathSciNet  Google Scholar 

  33. Soni, A., Sreejeth, N., Saxena, V., & Gupta, M. (2019). Series optimized fractional order low pass butterworth filter. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-019-04225-7

    Article  Google Scholar 

  34. Dvorak, J., Langhammer, L., Jerabek, J., Koton, J., Sotner, R., & Polak, J. (2018). Synthesis and analysis of electronically adjustable fractional-order low-pass filter. Journal of Circuits, Systems and Computers, 27(02), 1850032.

    Article  Google Scholar 

  35. Freeborn, T. J., Maundy, B., & Elwakil, A. (2013). Fractional resonance based RLβCα filters. Hindawi Publishing Corporation. https://doi.org/10.1155/2013/726721

    Article  MATH  Google Scholar 

  36. Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2012). Fractional step tow-thomas biquad filters. Nonlinear Theory and Its Applications, IEICE, 3, 357–374.

    Article  Google Scholar 

  37. Freeborn, T. J., Maundy, B., & Elwakil, A. S. (2010). Field programmable analogue array implementation of fractional step filters. IET Circuits, Devices and Systems, 4(6), 514–524.

    Article  Google Scholar 

  38. Mishra, S. K., Gupta, M., & Upadhyay, D. K. (2018). Compact design of four-phase fractional-order oscillator with independent phase and frequency control. Indian Journal of Physics, 93(7), 891-901. https://doi.org/10.1007/s12648-018-1341-y

  39. Chandratripathy, M., & Mohapatra, A. (2016). Fractional order filter based on fractional capacitors and fractional inductor. In: Proceedings of international interdisciplinary conference on engineering science & management, 17th - 18th December 2016, Goa, India. ISBN: 9788193137383

  40. Mishra, S. K., Gupta, M., & Upadhyay, D. K. (2018). Active realization of fractional order Butterworth lowpass filter using DVCC. Journal of King Saud University-Engineering Sciences. https://doi.org/10.1016/j.jksues.2018.11.005

    Article  Google Scholar 

  41. Kubanek, D., Khateb, F., Tsirimokou, G., & Psychalinos, C. (2016). Practical design and evaluation of fractional-order oscillator using differential voltage current conveyors. Circuits Systems and Signal Processing. https://doi.org/10.1007/s00034-016-0243-5

    Article  MathSciNet  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maneesha Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, A., Gupta, M. DVCC Based (2 + α) Order Low Pass Bessel Filter Using Optimization Techniques. Wireless Pers Commun 125, 2965–2984 (2022). https://doi.org/10.1007/s11277-022-09938-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09938-x

Keywords

Navigation