[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A Review on Wireless Sensor Networks: Routing

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs) are networks with devices that can detect, process, store, and communicate wirelessly. Each network terminal can have multiple sensing devices that can measure physical variations such as temperature, brightness, humidity, and vibration. However, developing and implementing WSNs poses many challenges. This review presents the challenges of WSN using different routing algorithms such as geographic routing, energy-aware routing, delay aware routing, QoS aware routing, secure aware routing, and hierarchical aware routing. Another goal is to find out which WSN component automates interference and behavior. What kind of application is in the WSN depends not only on his work but also on the question of the basis, functionality, and handling of his project. The study was carefully planned, and the systematic review of the literature was set up in a strong framework according to a pre-defined protocol. Finally, we evaluate the performance parameters of previous routing algorithms with diverse routine metrics that are energy consumption, delay, packet delivery ratio, throughput, false ratio, packet loss ratio, and network overhead.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data transparency. In this paper there is no data set is used in any form.

Code Availability

Software application or custom code. There coding may be available on a pre-request basis.

References

  1. Yi, C. W. (2008). A unified analytic framework based on minimum scan statistics for wireless ad hoc and sensor networks. IEEE Transactions on Parallel and Distributed Systems, 20(9), 1233–1245.

    Google Scholar 

  2. Song, L., & Hatzinakos, D. (2007). A cross-layer architecture of wireless sensor networks for target tracking. IEEE/ACM Transactions on Networking, 15(1), 145–158.

    Article  Google Scholar 

  3. Ahn, J., & Krishnamachari, B. (2009). Scaling laws for data-centric storage and querying in wireless sensor networks. IEEE/ACM Transactions on Networking, 17(4), 1242–1255.

    Article  Google Scholar 

  4. Okorafor, U., & Kundur, D. (2009). On the relevance of node isolation to the K-connectivity of wireless optical sensor networks. IEEE Transactions on Mobile Computing, 8(10), 1427–1440.

    Article  Google Scholar 

  5. Li, Y., Yu, H., Su, B., & Shang, Y. (2008). Hybrid micropower source for wireless sensor network. IEEE Sensors Journal, 8(6), 678–681.

    Article  Google Scholar 

  6. Tian, Y., & Ekici, E. (2007). Cross-layer collaborative in-network processing in multihop wireless sensor networks. IEEE Transactions on Mobile Computing, 6(3), 297–310.

    Article  Google Scholar 

  7. Yao, C., Chen, P. N., Wang, T. Y., Han, Y. S., & Varshney, P. K. (2007). Performance analysis and code design for minimum Hamming distance fusion in wireless sensor networks. IEEE Transactions on Information Theory, 53(5), 1716–1734.

    Article  MathSciNet  MATH  Google Scholar 

  8. Han, B., Leblet, J., & Simon, G. (2009). Query range problem in wireless sensor networks. IEEE Communications Letters, 13(1), 55–57.

    Article  Google Scholar 

  9. Wang, Y. C., Hu, C. C., & Tseng, Y. C. (2007). Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Transactions on Mobile Computing, 7(2), 262–274.

    Article  Google Scholar 

  10. Pan, M. S., Tsai, C. H., & Tseng, Y. C. (2009). The orphan problem in ZigBee wireless networks. IEEE Transactions on Mobile Computing, 8(11), 1573–1584.

    Article  Google Scholar 

  11. Hou, Y. T., Shi, Y., & Sherali, H. D. (2008). Rate allocation and network lifetime problems for wireless sensor networks. IEEE/ACM Transactions on networking, 16(2), 321–334.

    Article  Google Scholar 

  12. Wang, Y., Li, X. Y., & Zhang, Q. (2008). Efficient algorithms for p-self-protection problem in static wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 19(10), 1426–1438.

    Article  Google Scholar 

  13. Cheng, H. B., Geng, Y. A. N. G., & Hu, S. J. (2008). NHRPA: A novel hierarchical routing protocol algorithm for wireless sensor networks. The Journal of China Universities of Posts and Telecommunications, 15(3), 75–81.

    Article  Google Scholar 

  14. Ko, Y. I., Park, C. S., Song, I. C., & Kim, M. H. (2009). An efficient void resolution method for geographic routing in wireless sensor networks. Journal of Systems and Software, 82(6), 963–973.

    Article  Google Scholar 

  15. Domingo, M. C., & Prior, R. (2008). Energy analysis of routing protocols for underwater wireless sensor networks. Computer Communications, 31(6), 1227–1238.

    Article  Google Scholar 

  16. Deng, J., Han, R., & Mishra, S. (2006). INSENS: Intrusion-tolerant routing for wireless sensor networks. Computer Communications, 29(2), 216–230.

    Article  Google Scholar 

  17. Li, W. F., Wang, R. C., & Sun, L. J. (2009). MiniTE: Data acquisition routing for wireless sensor networks. The Journal of China Universities of Posts and Telecommunications, 16(1), 16–21.

    Article  Google Scholar 

  18. Li, L., Dong, S. S., & Wen, X. M. (2006). An energy efficient clustering routing algorithm for wireless sensor networks. The journal of China Universities of posts and Telecommunications, 13(3), 71–75.

    Article  Google Scholar 

  19. Chang, T. J., Wang, K., & Hsieh, Y. L. (2008). A color-theory-based energy efficient routing algorithm for mobile wireless sensor networks. Computer Networks, 52(3), 531–541.

    Article  MATH  Google Scholar 

  20. Pai, H. T., & Han, Y. (2008). Power-efficient direct-voting assurance for data fusion in wireless sensor networks. IEEE Transactions on Computers, 57(2), 261–273.

    Article  MathSciNet  MATH  Google Scholar 

  21. Watteyne, T., Molinaro, A., Richichi, M. G., & Dohler, M. (2010). From manet to ietf roll standardization: A paradigm shift in wsn routing protocols. IEEE Communications Surveys Tutorials, 13(4), 688–707.

    Article  Google Scholar 

  22. Ren, F., Zhang, J., He, T., Lin, C., & Ren, S. K. D. (2011). EBRP: Energy-balanced routing protocol for data gathering in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(12), 2108–2125.

    Article  Google Scholar 

  23. Saleem, K., Fisal, N., & Al-Muhtadi, J. (2014). Empirical studies of bio-inspired self-organized secure autonomous routing protocol. IEEE Sensors Journal, 14(7), 2232–2239.

    Article  Google Scholar 

  24. Zhang, D., & Dong, E. (2015). An efficient bypassing void routing protocol based on virtual coordinate for WSNs. IEEE Communications Letters, 19(4), 653–656.

    Article  Google Scholar 

  25. Liu, H. H., Su, J. J., & Chou, C. F. (2015). On energy-efficient straight-line routing protocol for wireless sensor networks. IEEE Systems Journal, 11(4), 2374–2382.

    Article  Google Scholar 

  26. Liu, X. (2015). Atypical hierarchical routing protocols for wireless sensor networks: A review. IEEE Sensors Journal, 15(10), 5372–5383.

    Article  Google Scholar 

  27. Brar, G. S., Rani, S., Chopra, V., Malhotra, R., Song, H., & Ahmed, S. H. (2016). Energy efficient direction-based PDORP routing protocol for WSN. IEEE Access, 4, 3182–3194.

    Article  Google Scholar 

  28. Farsi, M., Badawy, M., Moustafa, M., Ali, H. A., & Abdulazeem, Y. (2019). A congestion-aware clustering and routing (CCR) protocol for mitigating congestion in WSN. IEEE Access, 7, 105402–105419.

    Article  Google Scholar 

  29. Xu, C., Xiong, Z., Zhao, G., & Yu, S. (2019). An energy-efficient region source routing protocol for lifetime maximization in WSN. IEEE Access, 7, 135277–135289.

    Article  Google Scholar 

  30. Elsmany, E. F. A., Omar, M. A., Wan, T. C., & Altahir, A. A. (2019). EESRA: Energy efficient scalable routing algorithm for wireless sensor networks. IEEE Access, 7, 96974–96983.

    Article  Google Scholar 

  31. Shu, L., Zhang, Y., Yang, L. T., Wang, Y., Hauswirth, M., & Xiong, N. (2010). TPGF: Geographic routing in wireless multimedia sensor networks. Telecommunication Systems, 44(1), 79–95.

    Article  Google Scholar 

  32. Lyu, C., Gu, D., Zhang, X., Sun, S., Zhang, Y., & Pande, A. (2015). SGOR: Secure and scalable geographic opportunistic routing with received signal strength in WSNs. Computer Communications, 59, 37–51.

    Article  Google Scholar 

  33. Hong, C., Xiong, Z., & Zhang, Y. (2016). A hybrid beaconless geographic routing for different packets in WSN. Wireless Networks, 22(4), 1107–1120.

    Article  Google Scholar 

  34. Niroumand, Z., & Aghdasi, H. S. (2017). A geographic cross-layer routing adapted for disaster relief operations in wireless sensor networks. Computers Electrical Engineering, 64, 395–406.

    Article  Google Scholar 

  35. Huang, H., Zhang, J., Zhang, X., Yi, B., Fan, Q., & Li, F. (2017). EMGR: Energy-efficient multicast geographic routing in wireless sensor networks. Computer Networks, 129, 51–63.

    Article  Google Scholar 

  36. Hong, C., Zhang, Y., Xiong, Z., Xu, A., Chen, H., & Ding, W. (2018). FADS: Circular/spherical sector based forwarding area division and adaptive forwarding area selection routing protocol in WSNs. Ad Hoc Networks, 70, 121–134.

    Article  Google Scholar 

  37. Liu, C., Fang, D., Hu, Y., Tang, S., Xu, D., Cui, W., Chen, X., Liu, B., Xu, G., & Chen, H. (2018). EasyGo: Low-cost and robust geographic opportunistic sensing routing in a strip topology wireless sensor network. Computer Networks, 143, 191–205.

    Article  Google Scholar 

  38. Hadi, K. (2019). Analysis of exploiting geographic routing for data aggregation in wireless sensor networks. Procedia Computer Science, 151, 439–446.

    Article  Google Scholar 

  39. Ghaderi, M. R., Vakili, V. T., & Sheikhan, M. (2020). FGAF-CDG: Fuzzy geographic routing protocol based on compressive data gathering in wireless sensor networks. Journal of Ambient Intelligence and Humanized Computing, 11(6), 2567–2589.

    Article  Google Scholar 

  40. Hameed, A. R., Islam, S., Raza, M., & Khattak, H. A. (2020). Towards energy and performance-aware geographic routing for IoT-enabled sensor networks. Computers & Electrical Engineering, 85, 106643.

    Article  Google Scholar 

  41. Mottola, L., & Picco, G. P. (2010). MUSTER: Adaptive energy-aware multisink routing in wireless sensor networks. IEEE Transactions on Mobile Computing, 10(12), 1694–1709.

    Article  Google Scholar 

  42. Zhang, D., Li, G., Zheng, K., Ming, X., & Pan, Z. H. (2013). An energy-balanced routing method based on forward-aware factor for wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 766–773.

    Article  Google Scholar 

  43. Akila, I. S., & Venkatesan, R. (2016). A fuzzy based energy-aware clustering architecture for cooperative communication in WSN. The Computer Journal, 59(10), 1551–1562.

    Article  Google Scholar 

  44. Shafieirad, H., Adve, R. S., & Shahbazpanahi, S. (2018). Max-SNR opportunistic routing for large-scale energy harvesting sensor networks. IEEE Transactions on Green Communications and Networking, 2(2), 506–516.

    Article  Google Scholar 

  45. Sharma, D., & Bhondekar, A. P. (2018). Traffic and energy aware routing for heterogeneous wireless sensor networks. IEEE Communications Letters, 22(8), 1608–1611.

    Article  Google Scholar 

  46. Pandey, O. J., & Hegde, R. M. (2018). Low-latency and energy-balanced data transmission over cognitive small world WSN. IEEE Transactions on Vehicular Technology, 67(8), 7719–7733.

    Article  Google Scholar 

  47. Haseeb, K., Islam, N., Almogren, A., Din, I. U., Almajed, H. N., & Guizani, N. (2019). Secret sharing-based energy-aware and multi-hop routing protocol for IoT based WSNs. IEEE Access, 7, 79980–79988.

    Article  Google Scholar 

  48. El-Fouly, F. H., & Ramadan, R. A. (2020). E3AF: energy efficient environment-aware fusion based reliable routing in wireless sensor networks. IEEE Access, 8, 112145–112159.

    Article  Google Scholar 

  49. Haseeb, K., Almustafa, K. M., Jan, Z., Saba, T., & Tariq, U. (2020). Secure and energy-aware heuristic routing protocol for wireless sensor network. IEEE Access, 8, 163962–163974.

    Article  Google Scholar 

  50. Liu, M., Xu, S., & Sun, S. (2012). An agent-assisted QoS-based routing algorithm for wireless sensor networks. Journal of Network and Computer Applications, 35(1), 29–36.

    Article  Google Scholar 

  51. Malik, S. K., Dave, M., Dhurandher, S. K., Woungang, I., & Barolli, L. (2017). An ant-based QoS-aware routing protocol for heterogeneous wireless sensor networks. Soft Computing, 21(21), 6225–6236.

    Article  Google Scholar 

  52. Faheem, M., & Gungor, V. C. (2018). Energy efficient and QoS-aware routing protocol for wireless sensor network-based smart grid applications in the context of industry 4.0. Applied Soft Computing, 68, 910–922.

    Article  Google Scholar 

  53. Faheem, M., & Gungor, V. C. (2018). MQRP: Mobile sinks-based QoS-aware data gathering protocol for wireless sensor networks-based smart grid applications in the context of industry 4.0-based on internet of things. Future Generation Computer Systems, 82, 358–374.

    Article  Google Scholar 

  54. Jaiswal, K., & Anand, V. (2019). EOMR: an energy-efficient optimal multi-path routing protocol to improve QoS in wireless sensor network for IoT applications. Wireless Personal Communications, 111, 1–23.

    Google Scholar 

  55. Ganesh, D. R., Patil, K. K., & Suresh, L. (2019). Q-frpml: Qos-centric fault-resilient routing protocol for mobile-wsn based low power lossy networks. Wireless Personal Communications, 105(1), 267–292.

    Article  Google Scholar 

  56. Kalidoss, T., Rajasekaran, L., Kanagasabai, K., Sannasi, G., & Kannan, A. (2020). QoS aware trust based routing algorithm for wireless sensor networks. Wireless Personal Communications, 110(4), 1637–1658.

    Article  Google Scholar 

  57. Sujanthi, S., & Kalyani, S. N. (2020). SecDL: QoS-aware secure deep learning approach for dynamic cluster-based routing in WSN assisted IoT. Wireless Personal Communications, 114(3), 2135–2169.

    Article  Google Scholar 

  58. Deepa, O., & Suguna, J. (2020). An optimized QoS-based clustering with multipath routing protocol for wireless sensor networks. Journal of King Saud University-Computer and Information Sciences, 32(7), 763–774.

    Article  Google Scholar 

  59. Dinakaran, K., Adinadh, K. R., Sanjuna, K. R., & Valarmathie, P. (2021). Quality of service (Qos) and priority aware models for adaptive efficient image retrieval in WSN using TBL routing with RLBP features. Journal of Ambient Intelligence and Humanized Computing, 12(3), 4137–4146.

    Article  Google Scholar 

  60. Yao, Y., Cao, Q., & Vasilakos, A. V. (2014). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for heterogeneous wireless sensor networks. IEEE/ACM Transactions on Networking, 23(3), 810–823.

    Article  Google Scholar 

  61. Bhuyan, B. and Sarma, N., 2015. A delay aware routing protocol for wireless sensor networks. arXiv preprint arXiv:1504.02866.

  62. Huynh, T. T., Dinh-Duc, A. V., & Tran, C. H. (2016). Delay-constrained energy-efficient cluster-based multi-hop routing in wireless sensor networks. Journal of Communications and Networks, 18(4), 580–588.

    Article  Google Scholar 

  63. Wu, S., Niu, J., Chou, W., & Guizani, M. (2016). Delay-aware energy optimization for flooding in duty-cycled wireless sensor networks. IEEE Transactions on Wireless Communications, 15(12), 8449–8462.

    Article  Google Scholar 

  64. Lai, X., Ji, X., Zhou, X., & Chen, L. (2017). Energy efficient link-delay aware routing in wireless sensor networks. IEEE Sensors Journal, 18(2), 837–848.

    Article  Google Scholar 

  65. Maurya, S., Jain, V. K., & Chowdhury, D. R. (2019). Delay aware energy efficient reliable routing for data transmission in heterogeneous mobile sink wireless sensor network. Journal of Network and Computer Applications, 144, 118–137.

    Article  Google Scholar 

  66. Anees, J., Zhang, H. C., Lougou, B. G., Baig, S., & Dessie, Y. G. (2020). Delay aware energy-efficient opportunistic node selection in restricted routing. Computer Networks, 181, 107536.

    Article  Google Scholar 

  67. Jain, S., Pattanaik, K. K., Verma, R. K., Bharti, S., & Shukla, A. (2020). Delay-aware green routing for mobile-sink-based wireless sensor networks. IEEE Internet of Things Journal, 8(6), 4882–4892.

    Article  Google Scholar 

  68. Vishnupriya, G. and Ramachandran, R., Energy and Data Communication Delay Aware Routing in WSN.

  69. Vijayabaskar, K. (2020). Link reliability and delay aware routing in wireless sensor networks. Journal of Natural Remedies, 21(6), 421–428.

    Google Scholar 

  70. Rathee, M., Kumar, S., Gandomi, A. H., Dilip, K., Balusamy, B., & Patan, R. (2019). Ant colony optimization based quality of service aware energy balancing secure routing algorithm for wireless sensor networks. IEEE Transactions on Engineering Management, 68(1), 170–182.

    Article  Google Scholar 

  71. Hatzivasilis, G., Papaefstathiou, I., & Manifavas, C. (2017). SCOTRES: Secure routing for IoT and CPS. IEEE Internet of Things Journal, 4(6), 2129–2141.

    Article  Google Scholar 

  72. Uluagac, A. S., Beyah, R. A., & Copeland, J. A. (2012). Secure source-based loose synchronization (SOBAS) for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 24(4), 803–813.

    Article  Google Scholar 

  73. Ilango, P. (2015). Secure authentication and integrity techniques for randomized secured routing in WSN. Wireless Networks, 21(2), 443–451.

    Article  MathSciNet  Google Scholar 

  74. Ganesh, S., & Amutha, R. (2013). Efficient and secure routing protocol for wireless sensor networks through SNR based dynamic clustering mechanisms. Journal of Communications and Networks, 15(4), 422–429.

    Article  Google Scholar 

  75. Zin, S. M., Anuar, N. B., Kiah, M. L. M., & Ahmedy, I. (2015). Survey of secure multipath routing protocols for WSNs. Journal of Network and Computer Applications, 55, 123–153.

    Article  Google Scholar 

  76. Stavrou, E., & Pitsillides, A. (2010). A survey on secure multipath routing protocols in WSNs. Computer Networks, 54(13), 2215–2238.

    Article  MATH  Google Scholar 

  77. Thahniyath, G., & Jayaprasad, M. (2020). Secure and load balanced routing model for wireless sensor networks. Journal of King Saud University-Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2020.10.012

    Article  Google Scholar 

  78. Zin, S. M., Anuar, N. B., Kiah, M. L. M., & Pathan, A. S. K. (2014). Routing protocol design for secure WSN: Review and open research issues. Journal of Network and Computer Applications, 41, 517–530.

    Article  Google Scholar 

  79. Alippi, C., Camplani, R., & Roveri, M. (2009). An adaptive LLC-based and hierarchical power-aware routing algorithm. IEEE Transactions on Instrumentation and Measurement, 58(9), 3347–3357.

    Article  Google Scholar 

  80. Manap, Z., Ali, B. M., Ng, C. K., Noordin, N. K., & Sali, A. (2013). A review on hierarchical routing protocols for wireless sensor networks. Wireless Personal Communications, 72(2), 1077–1104.

    Article  Google Scholar 

  81. Shah, M. A., Abbas, G., Dogar, A. B., & Halim, Z. (2015). Scaling hierarchical clustering and energy aware routing for sensor networks. Complex Adaptive Systems Modeling, 3(1), 1–23.

    Article  Google Scholar 

  82. Ke, W., Yangrui, O., Hong, J., Heli, Z., & Xi, L. (2016). Energy aware hierarchical cluster-based routing protocol for WSNs. The Journal of China Universities of Posts and Telecommunications, 23(4), 46–52.

    Article  Google Scholar 

  83. Mann, P. S., & Singh, S. (2017). Energy-efficient hierarchical routing for wireless sensor networks: A swarm intelligence approach. Wireless Personal Communications, 92(2), 785–805.

    Article  Google Scholar 

  84. Hidoussi, F., Toral-Cruz, H., Boubiche, D. E., Martínez-Peláez, R., Velarde-Alvarado, P., Barbosa, R., & Chan, F. (2017). PEAL: Power efficient and adaptive latency hierarchical routing protocol for cluster-based WSN. Wireless Personal Communications, 96(4), 4929–4945.

    Article  Google Scholar 

  85. Jadidoleslamy, H. (2017). A hierarchical multipath routing protocol in clustered wireless sensor networks. Wireless Personal Communications, 96(3), 4217–4236.

    Article  Google Scholar 

  86. Guleria, K., & Verma, A. K. (2019). Comprehensive review for energy efficient hierarchical routing protocols on wireless sensor networks. Wireless Networks, 25(3), 1159–1183.

    Article  Google Scholar 

  87. Vahabi, S., Eslaminejad, M., & Dashti, S. E. (2019). Integration of geographic and hierarchical routing protocols for energy saving in wireless sensor networks with mobile sink. Wireless Networks, 25(5), 2953–2961.

    Article  Google Scholar 

  88. Raja Basha, A., & Yaashuwanth, C. (2019) Optimal partial aggregation based energy delay compromise technique for wireless sensor network. IETE Journal of Research, 65(6), 855–871. https://doi.org/10.1080/03772063.2018.1464966

Download references

Acknowledgements

This work is fully supported by the Department of Science and Technology (DST), Science for Equity, Empowerments, and Technology under Technical Intervention for Elderly and Disabled wide the sanction order Lr. No: SEED/TIDE/2019/514.

Funding

The Author of this paper acknowledge that this work is fully supported by SEED/TIDE/2019/514 funding provided by Government of India, Department of Science and Technology.

Author information

Authors and Affiliations

Authors

Contributions

ARB is the sole author for this work all the contributions to bring out this paper is done by author.

Corresponding author

Correspondence to Adam Raja Basha.

Ethics declarations

Conflict of interest

Include appropriate disclosures. Through this, the author of this paper declare that there is no conflict of interest in the following Either in the form of Data, In the forms of thought or materials used.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja Basha, A. A Review on Wireless Sensor Networks: Routing. Wireless Pers Commun 125, 897–937 (2022). https://doi.org/10.1007/s11277-022-09583-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-022-09583-4

Keywords

Navigation