[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Dynamic Architecture for Collaborative Distributed Storage of Collected Data in Fog Environments

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Fog computing needs, particularly in terms of performance, availability and reliability, are increasing every day due to the rapid growth in the number of connected Internet of Things devices and, consequently, the quantitative explosion in the volume of data generated. This study aims to improve the management of collected data to maximize the performance of Fog computing. To this end, a dynamic architecture for the distributed storage of collected data in Fog environments, based on Fog collaboration, is proposed. Dynamicity is related to the Fog and sensors mobility, but distribution is related to data storage in Fog computing resources. In addition, a supplementary Fog layer and a Fog assignment table are used for a good achievement of the proposed architecture and efficient management of Fog sensor associations. The simulation experiments show that the collaborative distributed storage significantly improves the performance of the Fog in terms of data availability and end-user latency. Subsequently, the proposed solution minimizes the number of queries to the cloud.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chiang, M., & Zhang, T. (2016). Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal, 3(6), 854–864. https://doi.org/10.1109/JIOT.2016.2584538

    Article  Google Scholar 

  2. Chang, C., Srirama, S. N., & Buyya, R. (2019). Internet of Things (IoT) and new computing paradigms. Fog and Edge Computing: Principles and Paradigms, 1, 1–23. https://doi.org/10.1002/9781119525080.ch1

    Article  Google Scholar 

  3. Pallavi, K. N., & Kumar, V. R. (2020). Authentication-based access control and data exchanging mechanism of IoT devices in fog computing environment. Wireless Personal Communications, 1, 1. https://doi.org/10.1007/s11277-020-07834-w

    Article  Google Scholar 

  4. Steffenel, L. A. (2018). Improving the performance of fog computing through the use of data locality. In 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD), Lyon, France (pp. 217–224). https://doi.org/10.1109/CAHPC.2018.8645879.

  5. Mahmood, Z., & Ramachandran, M. (2018). Fog computing: Concepts, principles and related paradigms. Fog Computing: Concepts, Frameworks and Technologies, 1, 1. https://doi.org/10.1007/978-3-319-94890-4

    Article  Google Scholar 

  6. Pereira, P., Araujo, J., Torquato, M., Dantas, J., Melo, C., & Maciel, P. (2020). Stochastic performance model for web server capacity planning in Fog computing. The Journal of Supercomputing, 76, 9533–9557. https://doi.org/10.1007/s11227-020-03218-w

    Article  Google Scholar 

  7. Margariti, S. V., Dimakopoulos, V. V., & Tsoumanis, G. (2020). Modeling and Simulation Tools for Fog Computing-A Comprehensive Survey from a Cost Perspective. Future Internet, 12(5), 89. https://doi.org/10.3390/fi12050089

    Article  Google Scholar 

  8. Naha, R. K., Garg, S. K., & Chan, A. (2018). Fog computing architecture: Survey and challenges. Big Data-Enabled Internet of Things, 1, 199–223. https://doi.org/10.1049/PBPC025E_ch10

    Article  Google Scholar 

  9. Hussain, M. M., Beg, M. M. S., & Alam, M. S. (2020). Fog computing for big data analytics in IoT aided smart grid networks. Wireless Personal Communications, 114, 3395–3418. https://doi.org/10.1007/s11277-020-07538-1

    Article  Google Scholar 

  10. Markus, A., & Kertesz, A. (2020). A survey and taxonomy of simulation environments modelling Fog computing. Simulation Modelling Practice and Theory, 101, 102042. https://doi.org/10.1016/j.simpat.2019.102042

    Article  Google Scholar 

  11. Hong, C., & Varghese, B. (2019). Resource management in fog/edge computing: A survey on architectures, infrastructure, and algorithms. ACM Computing Surveys, 52(5), 1–37. https://doi.org/10.1145/3326066

    Article  Google Scholar 

  12. Yousefpour, A., Fung, C., Nguyen, T., Kadiyala, K., Jalali, F., Niakanlahiji, A., Kong, J., & Jue, J. P. (2019). All one needs to know about Fog computing and related edge computing paradigms: A complete survey. Journal of Systems Architecture, 98, 289–330. https://doi.org/10.1016/j.sysarc.2019.02.009

    Article  Google Scholar 

  13. Ai, Y., Peng, M., & Zhang, K. (2018). Edge computing technologies for Internet of Things: A primer. Digital Communications and Networks, 4(2), 77–86. https://doi.org/10.1016/j.dcan.2017.07.001

    Article  Google Scholar 

  14. Vales, R., Moura, J., & Marinheiro, R. (2019). Energy-aware and adaptive Fog storage mechanism with data replication ruled by spatio-temporal content popularity. Journal of Network and Computer Applications, 135, 84–96.

    Article  Google Scholar 

  15. Ran, R., Kumar, N., Khurana, M., Kumar, A., Barnawi, A. (2021). Storage as a service in Fog computing: A systematic review. Journal of Systems Architecture.

  16. Hu, P., Dhelim, S., Ning, H., & Qiu, T. (2017). Survey on fog computing: Architecture, key technologies, applications and open issues. Journal of Network and Computer Applications, 98, 27–42.

    Article  Google Scholar 

  17. Sharma, P. K., Chen, M. Y., & Park, J. H. (2018). A software defined fog node based distributed blockchain cloud architecture for IoT. IEEE Access, 6, 115–124. https://doi.org/10.1109/ACCESS.2017.2757955

    Article  Google Scholar 

  18. Kim, D., Son, J., Seo, D., Kim, Y., Kim, H., & Seo, J. T. (2020). A novel transparent and auditable Fog-assisted cloud storage with compensation mechanism. Tsinghua Science and Technology, 25(1), 28–43. https://doi.org/10.26599/TST.2019.9010025

    Article  Google Scholar 

  19. Benhamida, N., Bouallouche-Medjkoune, L., Aïssani, D., & Lafifi, Y. (2017). Improving the Quality of Mobile Learning Services. Wireless Personal Communications, 97(4), 5305–5324.

    Article  Google Scholar 

  20. Kemme, B. (2009). Data replication. In Liu, L., Özsu, M. T. (Eds.) Encyclopedia of database systems. Springer. https://doi.org/10.1007/978-0-387-39940-9_110.

  21. Wang, Q. J. (2017). Fundamental concepts of distributed computing used in big data analytics, distributed computing in big data analytics: Concepts, technologies and applications. Scalable Computing and Communications. https://doi.org/10.1007/978-3-319-59834-5

  22. Amato, A. (2017). On the role of distributed computing in Big Data analytics, distributed computing in big data analytics: Concepts, technologies and applications. Scalable Computing and Communications. https://doi.org/10.1007/978-3-319-59834-5.

  23. Yousefpour, A., Ishigaki, G., & Jue, J. P. (2017). Fog computing: Towards minimizing delay in the Internet of Things. In IEEE International Conference on Edge Computing (EDGE), Honolulu, HI (pp 17–24). https://doi.org/10.1109/IEEE.EDGE.2017.12.

  24. Naha, R. K., Garg, S., Georgakopoulos, D., Jayaraman, P. P., Gao, L., Xiang, Y., & Ranjan, R. (2018). Fog computing: Survey of trends, architectures, requirements, and research directions. IEEE Access, 6, 47980–48009. https://doi.org/10.1109/ACCESS.2018.2866491.10.1109/ACCESS.2018.2866491

    Article  Google Scholar 

  25. Dua, D., & Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science.

  26. Benhamida, N., Bouallouche-Medjkoune, L., & Aïssani, D. (2018). Simulation evaluation of a relative frequency metric for web cache replacement policies. Evolving Systems, 9(3), 245–254.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadjette Benhamida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benhamida, N., Bouallouche-Medjkoune, L., Aïssani, D. et al. Dynamic Architecture for Collaborative Distributed Storage of Collected Data in Fog Environments. Wireless Pers Commun 123, 3511–3537 (2022). https://doi.org/10.1007/s11277-021-09301-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09301-6

Keywords

Navigation