[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Secure Authentication Schemes for Vehicular Adhoc Networks: A Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Vehicular Adhoc Network (VANET) is based on the principles of Mobile Adhoc NETwork (MANET) where vehicles are considered as nodes and secure communication is established to provide a safe driving experience. Due to its unique characteristics, it has various issues and challenges. These issues can be resolved by ensuring security requirements like authentication, privacy preservation, message integrity, non-repudiation, linkability, availability etc. Authentication plays a vital role since it is the first step to establish secure communication in the vehicular network. It also distinguishes malicious vehicles from legitimate vehicles. Different authentication schemes have been proposed to establish secure vehicular communications. A survey of the existing authentication schemes is given in this paper. At first, the existing authentication schemes are broadly classified based on message signing and verification methods. Then, each category is clearly explained with its sub-categories. At last, the existing schemes in each category are compared based on security requirements, security attacks and performance parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shen, X., Cheng, X., Yang, L., Zhang, R., & Jiao, B. (2014). Data dissemination in vanets: A scheduling approach. IEEE Transactions on Intelligent Transportation Systems, 15, 2213–2223. https://doi.org/10.1109/TITS.2014.2313631

    Article  Google Scholar 

  2. Shen, X., Zhang, R., Yang, X. C. L., & Jiao, B. (2013). Cooperative data dissemination via space-time network coding in vehicular network. IEEE GLOBECOM, Atlanta. https://doi.org/10.1109/GLOCOM.2013.6831599

    Article  Google Scholar 

  3. Yang, L., & Wang, F. (2007). Driving into intelligent spaces with pervasive communications. IEEE Transactions on Intelligent Transportation Systems, 22, 12–15. https://doi.org/10.1109/MIS.2007.8

    Article  Google Scholar 

  4. Anita, E. A. M., & Jenefa, J. (2016). A survey on authentication schemes of VANETs. International Conference on Information Communication and Embedded Systems (ICICES), 2016, 1–7. https://doi.org/10.1109/ICICES.2016.7518946

    Article  Google Scholar 

  5. Mejri, M. N., Ben-Othman, J., & Hamdi, M. (2014). Survey on VANET security challenges and possible cryptographic solutions. Vehicular Communications, 1, 53–66. https://doi.org/10.1016/j.vehcom.2014.05.001

    Article  Google Scholar 

  6. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., & Weil, T. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. Communications Surveys & Tutorials, IEEE, 13, 584–616. https://doi.org/10.1109/SURV.2011.061411.00019

    Article  Google Scholar 

  7. Raw, R. S., Kumar, M., & Singh, N. (2013). Security Challenges, issues and their solutions for VANET. International Journal of Network Security & Its Applications (IJNSA)., 5, 95–105. https://doi.org/10.5121/ijnsa.2013.5508

    Article  Google Scholar 

  8. Samara, Gh., Al-Salihy, W. A. H., & Sures, R. (2010). Security analysis of of vehicular Ad Hoc networks (VANET). Network Applications Protocols and Services (NETAPPS). https://doi.org/10.1109/NETAPPS.2010.17

    Article  Google Scholar 

  9. Chauley, N. K. (2016). Security analysis of vehicular Ad Hoc networks (VANETs): A comprehensive study. International Journal of Security and Its Applications, 10(261), 274.

    Google Scholar 

  10. Mokhtar, B., & Azab, M. (2015). Survey on security issues in vehicular Ad Hoc Networks. Alexandria Engineering Journal, 54, 115–1126. https://doi.org/10.1016/j.aej.2015.07.011

    Article  Google Scholar 

  11. Nai, L., & Jia, T. (2016). An efficient conditional privacy-preserving authentication scheme for vehicular sensor networks without pairings (ECPAS). IEEE Transactions on Intelligent Transportation Systems, 17, 1319–1328. https://doi.org/10.1109/TITS.2015.2502322

    Article  Google Scholar 

  12. Vijayakumar, P., Azees, M., Kannan, A., & Deborah, L. J. (2015). Dual authentication and key management techniques for secure data transmission in vehicular Ad Hoc networks. IEEE Trans on Intelligent Transportation Systems, 17, 1015–1028. https://doi.org/10.1109/TITS.2015.2492981

    Article  Google Scholar 

  13. Wazid, M., Das, A. K., Kumar, N., Odelu, V., Reddy, A. G., & Park, K. P. A. Y. (2017). Design of lightweight authentication and key agreement protocol for vehicular Ad Hoc networks. IEEE Access, 5, 14966–14980. https://doi.org/10.1109/ACCESS.2017.2723265

    Article  Google Scholar 

  14. Mahagaonkar, S. V., Dongre, N. (2017). TEAC: Timed Efficient Asymmetric Cryptography for Enhancing Security in VANET International Conference on Nascent Technologies in the Engineering Field 1–5.

  15. Xiong, H., Chen, J., Mei, Q., Zhao, Y. (2020). Conditional privacy-preserving authentication protocol with dynamic membership updating for VANETs. In IEEE Transactions on Dependable and Secure Computing, doi: https://doi.org/10.1109/TDSC.2020.3047872.

  16. Jenefa, J., & Anita, E. (2019). An enhanced secure authentication scheme for vehicular Ad Hoc networks without pairings. Wireless Personal Communications, 106, 535–554.

    Article  Google Scholar 

  17. He, D., Zeadally, S., Baowen, Xu., & Huang, X. (2015). Efficient identity based conditional privacy-preserving authentication scheme for vehicular Ad Hoc network (EICPAS). IEEE Transactions on Information Forensics and Security, 10, 2681–2691. https://doi.org/10.1109/TIFS.2015.2473820

    Article  Google Scholar 

  18. Liu, Y., Wang, L., & Chen, H.-H. (2014). Message authentication using proxy vehicles in vehicular Ad Hoc networks (PBAS). IEEE Transactions on Vehicular Technology, 64, 3697–3710. https://doi.org/10.1109/TVT.2014.2358633

    Article  Google Scholar 

  19. Xie Yong, Wu., Libing, Z. Y., & Jian, S. (2016). Efficient and secure authentication scheme with conditional privacy-preserving for VANETs (ECASCP). Chinese Journal of Electronics, 25, 950–956. https://doi.org/10.1049/cje.2016.08.027

    Article  Google Scholar 

  20. Tzeng, S.-F., Horng, S.-J., Li, T., Wang, X., Huang, P.-H., & Khan, M. K. (2017). Enhancing security and privacy for identity-based batch verification scheme in VANET (ESPIBV). IEEE Transactions on Vehicular Technology, 66, 3535–4348. https://doi.org/10.1109/TVT.2015.2406877

    Article  Google Scholar 

  21. Cui, J., Zhang, J., Zhong, H., & Yan, Xu. (2017). SPACF: A secure privacy-preserving authentication scheme for VANET with cuckoo filter. IEEE Transactions on Vehicular Technology, 66, 10283–10295. https://doi.org/10.1109/TVT.2017.2718101

    Article  Google Scholar 

  22. Asaar, M. R., Salmasizadeh, M., Susilo, W., & Majidi, A. (2018). A secure and efficient authentication technique for vehicular Ad-Hoc networks (ID-MAP). IEEE Transactions on Vehicular Technology, 67, 5409–5423. https://doi.org/10.1109/TVT.2018.2822768

    Article  Google Scholar 

  23. Jenefa, J., & Anita, E. A. M. (2021). Identity-based message authentication scheme using proxy vehicles for vehicular ad hoc networks. Wireless Networks, 27, 3093–3108.

    Article  Google Scholar 

  24. Zhong, H., Wen, J., Cui, J., & Zhang, S. (2016). Efficient conditional privacy-preserving and authentication scheme for secure service provision in VANET (ECPASP). Tsinghua Science and Technology, 21, 620–629. https://doi.org/10.1109/TST.2016.7787005

    Article  Google Scholar 

  25. Li, J., Huang, L., & Guizani, M. (2015). ACPN: A novel authentication framework with conditional privacy-preservation and non-repudiation for VANETs. IEEE Transactions on Parallel and Distributed Systems, 26, 938–948. https://doi.org/10.1109/TPDS.2014.2308215

    Article  Google Scholar 

  26. Sun, C., Liu, J., Xinpeng, Xu., & Ma, J. (2017). A privacy-preserving mutual authentication resisting DoS attacks in VANETs (MADAR). IEEE Access, 5, 24012–24022. https://doi.org/10.1109/ACCESS.2017.2768499

    Article  Google Scholar 

  27. Ning, P., Liu, A., & Du, W. (2008). Mitigating DoS attacks against broadcast authentication in wireless sensor networks. ACM Transactions on Sensor Networks, 4, 1–35. https://doi.org/10.1145/1325651.1325652

    Article  Google Scholar 

  28. Jenefa, J., & Mary Anita, E. A. (2018). Secure vehicular communication using ID based signature scheme (SVCIBS). Wireless Personal Communications, 98, 1383–1411. https://doi.org/10.1007/s11277-017-4923-7

    Article  Google Scholar 

  29. Sun, J., Zhang, C., Zhang, Y., & Fang, Y. (2010). An identity-based security system for user privacy in vehicular Ad Hoc networks (IBSSUP). IEEE Transactions on Parallel and Distributed Systems, 21, 1227–1239. https://doi.org/10.1109/TPDS.2010.14

    Article  Google Scholar 

  30. Alshudukhi, J. S., Mohammed, B. A., & Al-Mekhlafi, Z. G. (2020). Conditional privacy-preserving authentication scheme without using point multiplication operations based on elliptic curve cryptography (ECC). IEEE Access, 8, 222032–222040. https://doi.org/10.1109/ACCESS.2020.3044961

    Article  Google Scholar 

  31. Horng, S.-J., Tzeng, S.-F., Pan, Yi., Fan, P., Wang, X., Li, T., & Khan, M. K. (2013). b-SPECS+: Batch verification for securepseudonymous authentication in VANET. IEEE Trans on Information Forensics and Security, 11, 1860–1675. https://doi.org/10.1109/TIFS.2013.2277471

    Article  Google Scholar 

  32. Chim, T. W., Yiu, S. M., Hui, L. C. K., & Li, O. K. (2011). SPECS: Secure and privacy enhancing communications schemes for VANETs. Ad Hoc Networks, 9, 189–203. https://doi.org/10.1016/j.adhoc.2010.05.005

    Article  Google Scholar 

  33. Chim, T. W., Yiu, S. M., Hui, L. C. K., & Li, V. O. K. (2012). VSPN: VANET-based secure and privacy-preserving navigation. IEEE Trans on Computers, 2, 510–524.

    MathSciNet  Google Scholar 

  34. Zhong, H., Huang, Bo., Cui, J., Yan, Xu., & Liu, Lu. (2018). Conditional privacy-preserving authentication using registration list in vehicular Ad Hoc networks (CPAURL). IEEE Access, 6, 2241–2250. https://doi.org/10.1109/ACCESS.2017.2782672

    Article  Google Scholar 

  35. Cui, J., LuWei, J. Z., Yan, Xu., & Zhong, H. (2018). An efficient message-authentication scheme based on edge computing for vehicular Ad Hoc networks (EMASEC). IEEE Trans on Intelligent Transportation Systems. https://doi.org/10.1109/TITS.2018.2827460

    Article  Google Scholar 

  36. Gayathri, N. B., Gowri Thumbur, P., Reddy, V., & Md. Zia Ur Rahman, . (2018). Efficient pairing-free certificateless authentication scheme with batch verification for vehicular Ad-Hoc networks (EPCABV). IEEE Access, 6, 31808–31819. https://doi.org/10.1109/ACCESS.2018.2845464

    Article  Google Scholar 

  37. Yong Hao, Yu., Cheng, C. Z., & Song, W. (2011). A distributed key management framework with cooperative message authentication in VANETs (DKMFC). IEEE Journals on Selected Areas in Communications, 29, 616–629. https://doi.org/10.1109/JSAC.2011.110311

    Article  Google Scholar 

  38. Zhu, X., Jiang, S., Wang, L., & Li, H. (2014). Efficient privacy-preserving authentication for vehicular Ad Hoc networks (EPPA). IEEE Trans on Vehicular Technology, 63, 907–919. https://doi.org/10.1109/TVT.2013.2294032

    Article  Google Scholar 

  39. Shao, J., Lin, X., Rongxing, Lu., & Zuo, C. (2015). A threshold anonymous authentication protocol for VANETs (TAAP). IEEE Trans on Vehicular Technology, 65, 1711–1720. https://doi.org/10.1109/TVT.2015.2405853

    Article  Google Scholar 

  40. Lu, R., Lin, X., Zhu, H., Ho, P-H, (Sherman) Shen, X. (2008). ECPP: Efficient conditional privacy preservation protocol for secure vehicular communications. 2008 IEEE Infocom Conference. 1903–1911. https://doi.org/10.1109/INFOCOM.2008.179.

  41. Jung, C. D., Sur, C., Park, Y., & Rhee, K.-H. (2009). A Robust and efficient anonymous authentication protocol in VANETs (REAP). Journal of Communications and Networks, 11, 607–614. https://doi.org/10.1109/JCN.2009.6388414

    Article  Google Scholar 

  42. Chen, L., Li, Q., Martin, K. M., & Ng, S.-L. (2016). Private reputation retrieval in public – a privacy-aware announcement scheme for VANETs (PRRP). IET Information Security, 11, 204–210. https://doi.org/10.1049/iet-ifs.2014.0316

    Article  Google Scholar 

  43. Zhang, L., Qianhong, Wu., Domingo-Ferrer, J., Qin, Bo., & Chuanyan, Hu. (2016). DAPPA: Distributed aggregate privacy-preserving authentication in VANETs. IEEE Trans on Intelligent Transportation Systems, 18, 516–526. https://doi.org/10.1109/TITS.2016.2579162

    Article  Google Scholar 

  44. Azees, M., Vijayakumar, P., & Deboarh, L. J. (2017). EAAP: Efficient anonymous authentication with conditional privacy-preserving scheme for vehicular Ad Hoc networks. IEEE Trans on Intelligent Transportation Systems, 18, 2467–2476. https://doi.org/10.1109/TITS.2016.2634623

    Article  Google Scholar 

  45. Jo, H. J., Kim, I. S., & Lee, D. H. (2018). Reliable cooperative authentication for vehicular networks (RCAVN). IEEE Trans on Intelligent Transportation Systems, 19, 1065–1079. https://doi.org/10.1109/TITS.2017.2712772

    Article  Google Scholar 

  46. Zhang, L., Qianhong, Wu., Solanas, A., & Domingo-Ferrer, J. (2010). A Scalable robust authentication protocol for secure vehicular communications (SRAPS). IEEE Trans on Vehicular Technology, 59, 1606–1617. https://doi.org/10.1109/TVT.2009.2038222

    Article  Google Scholar 

  47. Liu, Z.-C., Ling Xiong, Tu., & Peng, D.-Y. (2018). A realistic distributed conditional privacy preserving authentication scheme for vehicular Ad Hoc networks (RDCPAS). IEEE Access, 6, 26307–26317. https://doi.org/10.1109/ACCESS.2018.2834224

    Article  Google Scholar 

  48. Jiang, S., Zhu, X., & Wang, L. (2016). An efficient anonymous batch authentication scheme based on HMAC for VANETs (ABAH). IEEE Trans on Intelligent Transportation Systems, 17, 2193–2204. https://doi.org/10.1109/TITS.2016.2517603

    Article  Google Scholar 

  49. Alfadhli, S. A., Lu, S., Chen, K., & Sebai, M. (2020). MFSPV: A multi-factor secured and lightweight privacy-preserving authentication scheme for VANETs. IEEE Access, 8, 142858–142874.

    Article  Google Scholar 

  50. Liu, H., Wang, H., & Gu, H. (2020). HPBS: A hybrid proxy based authentication scheme in VANETs. IEEE Access, 8, 161655–161667. https://doi.org/10.1109/ACCESS.2020.3021408

    Article  Google Scholar 

Download references

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have participated in writing the manuscript and have revised the final version. All authors read and approved the final manuscript.

Corresponding author

Correspondence to J. Jenefa.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethics approval

This article does not contain any studies with human participants and/or animals performed by any of the authors.

Informed Consent

There is no informed consent for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenefa, J., Mary Anita, E.A. Secure Authentication Schemes for Vehicular Adhoc Networks: A Survey. Wireless Pers Commun 123, 31–68 (2022). https://doi.org/10.1007/s11277-021-09118-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09118-3

Keywords

Navigation