[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Hybrid Bird Swarm Optimized Quasi Affine Algorithm Based Node Location in Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSN) with the Internet of Things (IoT) play a vital key concept while performing the information transmission process. The WSN with IoT has been effectively utilized in different research contents such as network protocol selection, topology control, node deployment, location technology and network security, etc. Among that, node location is one of the crucial problems that need to be resolved to improve communication. The node location is directly influencing the network performance, lifetime and data sense. Therefore, this paper introduces the Bird Swarm Optimized Quasi-Affine Evolutionary Algorithm (BSOQAEA) to fix the node location problem in sensor networks. The proposed algorithm analyzes the node location, and incorporates the dynamic shrinking space process is to save time. The introduced evolutionary algorithm optimizes the node centroid location performed according to the received signal strength indications (RSSI). The created efficiency in the system is determined using high node location accuracy, minimum distance error, and location error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jain, A., Khari, M., Verdú, E., et al. (2020). A route selection approach for variable data transmission in wireless sensor networks. Cluster Computing, 23, 1697–1709. https://doi.org/10.1007/s10586-020-03115-0

    Article  Google Scholar 

  2. Judge, M. A., et al. (2018). Monitoring of power transmission lines through wireless sensor networks in smart grid. In L. Barolli & T. Enokido (Eds.), Innovative mobile and internet services in ubiquitous computing. IMIS 2017. Advances in intelligent systems and computing. (Vol. 612). Cham: Springer. https://doi.org/10.1007/978-3-319-61542-4_15

    Chapter  Google Scholar 

  3. Preeth, S. S. L., Dhanalakshmi, R., Kumar, R., & Shakeel, P. M. (2018). An adaptive fuzzy rule based energy efficient clustering and immune-inspired routing protocol for WSN-assisted IoT system. Journal of Ambient Intelligence and Humanized Computing, 1–13.

  4. Zhao, D., Zhou, Z., Wang, S., et al. (2020). Reinforcement learning–enabled efficient data gathering in underground wireless sensor networks. Personal and Ubiquitous Computing. https://doi.org/10.1007/s00779-020-01443-x

    Article  Google Scholar 

  5. Zhou, Z., Zhao, D., Liu, L., & Hung, P. C. (2018). Energy-aware composition for wireless sensor networks as a service. Future Generation Computer Systems, 80, 299–310.

    Article  Google Scholar 

  6. Sheron, P. F., Sridhar, K. P., Baskar, S., & Shakeel, P. M. (2019). A decentralized scalable security framework for end‐to‐end authentication of future IoT communication. Transactions on Emerging Telecommunications Technologies, e3815. https://doi.org/10.1002/ett.3815

  7. Li, F., Zheng, Z., & Jin, C. (2016). Secure and efficient data transmission in the Internet of Things. Telecommunication Systems, 62, 111–122. https://doi.org/10.1007/s11235-015-0065-y

    Article  Google Scholar 

  8. Luo, M., Wen, Y., & Hu, X. (2019). Practical data transmission scheme for wireless sensor networks in heterogeneous IoT environment. Wireless Personal Communications, 109, 505–519. https://doi.org/10.1007/s11277-019-06576-8

    Article  Google Scholar 

  9. Luo, M., Luo, Y., Wan, Y. W., & Wang, Z. (2018). Secure and efficient access control scheme for wireless sensor networks in the cross-domain context of the IoT. Security and Communication Networks. https://doi.org/10.1155/2018/6140978

    Article  Google Scholar 

  10. MuhammedShafi, P., Selvakumar, S., & Mohamed Shakeel, P. (2018). An efficient optimal fuzzy C means (OFCM) algorithm with particle swarm optimization (PSO) to analyze and predict crime data. Journal of Advanced Research in Dynamical and Control Systems, 10(06), 699–707.

    Google Scholar 

  11. Rui, H., Huan, L., Yang, H., et al. (2020). Research on secure transmission and storage of energy IoT information based on blockchain. Peer-to-Peer Networking and Applications, 13, 1225–1235. https://doi.org/10.1007/s12083-019-00856-7

    Article  Google Scholar 

  12. Dwivedi, R. K., Kumari, N., & Kumar, R. (2020). Integration of wireless sensor networks with cloud towards efficient management in IoT: A review. In M. Kolhe, S. Tiwari, M. Trivedi, & K. Mishra (Eds.), Advances in data and information sciences. Lecture notes in networks and systems. (Vol. 94). Singapore: Springer. https://doi.org/10.1007/978-981-15-0694-9_10

    Chapter  Google Scholar 

  13. Yaqoob, I., Ahmed, E., Abaker, I., et al. (2017). Internet of things architecture: Recent advances, taxonomy, requirements, and open challenges. IEEE Wireless Communications, 24(3), 10–16.

    Article  Google Scholar 

  14. Mann, P. S., & Singh, S. (2019). Improved artificial bee colony metaheuristic for energy-efficient clustering in wireless sensor networks. Artificial Intelligence Review, 51, 329–354. https://doi.org/10.1007/s10462-017-9564-4

    Article  Google Scholar 

  15. Gao, K. Z., Pan, Q. K., Chua, T. J., Chong, C. S., Cai, T. X., & Suganthan, P. N. (2016). An improved artificial bee colony algorithm for flexible job-shop scheduling problem with fuzzy processing time. Expert Systems with Applications, 65, 52–67.

    Article  Google Scholar 

  16. Curry, R. M., & Smith, J. C. (2016). A survey of optimization algorithms for wireless sensor network lifetime maximization. Computers & Industrial Engineering, 101, 145–166.

    Article  Google Scholar 

  17. Zhang, Y., & Liu, M. (2020). Node placement optimization of wireless sensor networks using multi-objective adaptive degressive Ary number encoded genetic algorithm. Algorithms, 13, 189.

    Article  MathSciNet  Google Scholar 

  18. Kanoosh, H. M., Houssein, E. H., & Selim, M. M. (2019). Salp swarm algorithm for node localization in wireless sensor networks. Journal of Computer Networks and Communications, 2019.

  19. Zhang, Y., Liu, S., & Han, L. (2019). Optimization of node deployment in wireless sensor networks based on learning automata. In Y. Tang, Q. Zu, & J. Rodríguez García (Eds.), Human centered computing. HCC 2018. Lecture notes in computer science. (Vol. 11354). Cham: Springer. https://doi.org/10.1007/978-3-030-15127-0_8

    Chapter  Google Scholar 

  20. Arora, S., & Singh, S. (2017). Node localization in wireless sensor networks using butterfly optimization algorithm. Arabian Journal for Science and Engineering, 42, 3325–3335. https://doi.org/10.1007/s13369-017-2471-9

    Article  Google Scholar 

  21. Tuba, E., Tuba, M., & Beko, M. (2018). Two stage wireless sensor node localization using firefly algorithm. In X. S. Yang, A. Nagar, & A. Joshi (Eds.), Smart trends in systems, security and sustainability. Lecture notes in networks and systems. (Vol. 18). Singapore: Springer. https://doi.org/10.1007/978-981-10-6916-1_10

    Chapter  Google Scholar 

  22. Priyadarshi, R., Gupta, B., & Anurag, A. (2020). Deployment techniques in wireless sensor networks: A survey, classification, challenges, and future research issues. The Journal of Supercomputing, 76, 7333–7373. https://doi.org/10.1007/s11227-020-03166-5

    Article  Google Scholar 

  23. Bacanin, N., Tuba, E., Zivkovic, M., Strumberger, I., & Tuba, M. (2021). Whale optimization algorithm with exploratory move for wireless sensor networks localization. In A. Abraham, S. Shandilya, L. Garcia-Hernandez, & M. Varela (Eds.), Hybrid intelligent systems. HIS 2019. Advances in intelligent systems and computing. (Vol. 1179). Cham: Springer. https://doi.org/10.1007/978-3-030-49336-3_33

    Chapter  Google Scholar 

  24. Cao, Y., & Wang, Z. (2019). Improved DV-Hop localization algorithm based on dynamic anchor node set for wireless sensor networks. IEEE Access, 7, 124876–124890. https://doi.org/10.1109/ACCESS.2019.2938558

    Article  Google Scholar 

  25. Houssein, E. H., Saad, M. R., Hussain, K., Zhu, W., Shaban, H., & Hassaballah, M. (2020). Optimal sink node placement in large scale wireless sensor networks based on Harris’ Hawk optimization algorithm. IEEE Access, 8, 19381–19397. https://doi.org/10.1109/ACCESS.2020.2968981

    Article  Google Scholar 

  26. Malathy, E. M., & Muthuswamy, V. (2018). State of art: Vertical handover decision schemes in next-generation wireless network. Journal of Communications and Information Networks, 3(1), 43–52.

    Article  Google Scholar 

  27. Praveen Joe, I. R., & Varalakshmi, P. (2019). A multilayered clustering framework to build a service portfolio using Swarm-based algorithms. Automatika, 60(3), 294–304. https://doi.org/10.1080/00051144.2019.1590951

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Malathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malathy, E.M., Asaithambi, M., Dheeraj, A. et al. Hybrid Bird Swarm Optimized Quasi Affine Algorithm Based Node Location in Wireless Sensor Networks. Wireless Pers Commun 122, 947–962 (2022). https://doi.org/10.1007/s11277-021-08934-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08934-x

Keywords

Navigation