[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

An Image Authentication and Tampered Detection Scheme Exploiting Local Binary Pattern Along with Hamming Error Correcting Code

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Local Binary Pattern (LBP) has been widely used for texture analysis, feature extraction, visual investigation, pattern matching, and image authentication. It is essential to investigate the effectiveness of LBP, for tamper detection, tamper localization, and ownership identification of a watermarked image, which are highly desirable in many human-centric applications like health-care, military communication, remote sensing, and law enforcement. In this article, a Reversible Watermarking Technique has been introduced to verify image integrity, authenticity and error correction using LBP and Hamming codes. The LBP values have been calculated from (\(2 \times 2\)) original pixel block of the cover image. Then the watermark is inserted within the Least Significant Bit of the interpolated pixels. Here, LBP operator is used to solve image authentication and tamper detection problem whereas Hamming code is used to detect and correct the error in the extraction phase. Some standard NIST recommended steganalysis have been performed to evaluate the robustness and imperceptibility. It is observed that the proposed scheme is secure and robust against various attacks. It can also detect tampered locations and can verify the ownership of an image. Experimental results are compared with the existing watermarking schemes to demonstrate the superiority of the proposed scheme. It also shows good perceptible quality with a high payload and less computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Algaet, M. A., Noh, Z. A. B. M., Basari, A. S. B. H., Shibghatullah, A. S., Milad, A. A., Abugharsa, A. B., & Mustapha, A. (2017). Development of robust medical image transmission via Wi-Fi IEEE 802.11 b in the hospital area. Wireless Personal Communications, 95(2), 1617–1634.

    Article  Google Scholar 

  2. Sharma, A., Singh, A. K., & Ghrera, S. P. (2017). Robust and secure multiple watermarking for medical images. Wireless Personal Communications, 92(4), 1611–1624.

    Article  Google Scholar 

  3. Alias Sathya, S. P., & Ramakrishnan, S. (2018). Fibonacci based key frame selection and scrambling for video watermarking in DWT-SVD domain. Wireless Personal Communications, 102(2), 2011–2031.

    Article  Google Scholar 

  4. Tsai, J. L., Lo, N. W., & Wu, T. C. (2013). A new password-based multi-server authentication scheme robust to password guessing attacks. Wireless Personal Communications, 71(3), 1977–1988.

    Article  Google Scholar 

  5. Banu, N. M., & Sujatha, S. (2015). Improved tampering detection for image authentication based on image partitioning. Wireless Personal Communications, 84(1), 69–85.

    Article  Google Scholar 

  6. Pal, P., Chowdhuri, P., & Jana, B. (2018). Weighted matrix based reversible watermarking scheme using color image. Multimedia Tools and Applications, 77, 23073–23098. https://doi.org/10.1007/s11042-017-5568-y.

    Article  Google Scholar 

  7. Thirunavukkarasu, V., Kumar, J. S., Chae, G. S., & Kishorkumar, J. (2018). Non-intrusive forensic detection method using DSWT with reduced feature set for copy-move image tampering. Wireless Personal Communications, 98(4), 3039–3057.

    Article  Google Scholar 

  8. Fridrich, J., Goljan, M., & Du, R. (2001). Invertible authentication. In Security and watermarking of multimedia contents III (Vol. 4314, pp. 197–209). International Society for Optics and Photonics.

  9. Phiasai, T., Temdee, P., & Chamnongthai, K. (2015). An anti-cropping watermarking method for facial images using prediction and Weber ratio techniques. Wireless Personal Communications, 85(2), 421–448.

    Article  Google Scholar 

  10. Noor, R., Khan, A., & Sarfaraz, A. (2019). High performance and energy efficient image watermarking for video using a mobile device. Wireless Personal Communications, 104(4), 1535–1551.

    Article  Google Scholar 

  11. Zhang, H., Wang, C., & Zhou, X. (2017). An improved secure semi-fragile watermarking based on LBP and Arnold transform. Journal of Information Processing Systems, 13(5), 1382–1396.

    Google Scholar 

  12. Su, Q., Niu, Y., Wang, Q., & Sheng, G. (2013). A blind color image watermarking based on DC component in the spatial domain. Optik-International Journal for Light and Electron Optics, 124(23), 6255–6260.

    Article  Google Scholar 

  13. Verma, V. S., Jha, R. K., & Ojha, A. (2015). Significant region based robust watermarking scheme in lifting wavelet transform domain. Expert Systems with Applications, 42(21), 8184–8197.

    Article  Google Scholar 

  14. Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.

    Article  Google Scholar 

  15. Wenyin, Z., & Shih, F. Y. (2011). Semi-fragile spatial watermarking based on local binary pattern operators. Optics Communications, 284(16–17), 3904–3912.

    Article  Google Scholar 

  16. Roy, S. K., Chanda, B., Chaudhuri, B. B., Banerjee, S., Ghosh, D. K., & Dubey, S. R. (2018). Local directional ZigZag pattern: A rotation invariant descriptor for texture classification. Pattern Recognition Letters, 108, 23–30.

    Article  Google Scholar 

  17. Wei, X., Wang, H., Guo, G., & Wan, H. (2018). Multiplex image representation for enhanced recognition. International Journal of Machine Learning and Cybernetics, 9(3), 383–392.

    Article  Google Scholar 

  18. Chang, J. D., Chen, B. H., & Tsai, C. S. (2013). LBP-based fragile watermarking scheme for image tamper detection and recovery. In 2013 international symposium on next-generation electronics (pp. 173–176). IEEE.

  19. Ding, F., Zhu, G., & Shi, Y. Q. (2013). A novel method for detecting image sharpening based on local binary pattern. In International workshop on digital watermarking (pp. 180–191). Springer, Berlin, Heidelberg.

  20. Pinjari, S. A., & Patil, N. N. (2016). A pixel based fragile watermarking technique using LBP (Local Binary Pattern). In 2016 international conference on global trends in signal processing, information computing and communication (ICGTSPICC) (pp. 194–196). IEEE.

  21. Alahmadi, A., Hussain, M., Aboalsamh, H., Muhammad, G., Bebis, G., & Mathkour, H. (2017). Passive detection of image forgery using DCT and local binary pattern. Signal, Image and Video Processing, 11(1), 81–88.

    Article  Google Scholar 

  22. Pan, X., & Lyu, S. (2010). Region duplication detection using image feature matching. IEEE Transactions on Information Forensics and Security, 5(4), 857–867.

    Article  Google Scholar 

  23. Mishra, P., Mishra, N., Sharma, S., & Patel, R. (2013). Region duplication forgery detection technique based on SURF and HAC. The Scientific World Journal, 2013, 267691.

    Google Scholar 

  24. Uliyan, D. M., Jalab, H. A., & Wahab, A. W. A. (2015). Copy move image forgery detection using Hessian and center symmetric local binary pattern. In 2015 IEEE Conference on Open Systems (ICOS) (pp. 7–11). IEEE.

  25. Jung, K. H., & Yoo, K. Y. (2009). Data hiding method using image interpolation. Computer Standards & Interfaces, 31(2), 465–470.

    Article  Google Scholar 

  26. Lee, C. F., & Huang, Y. L. (2012). An efficient image interpolation increasing payload in reversible data hiding. Expert Systems with Applications, 39(8), 6712–6719.

    Article  Google Scholar 

  27. Hu, J., & Li, T. (2015). Reversible steganography using extended image interpolation technique. Computers & Electrical Engineering, 46, 447–455.

    Article  Google Scholar 

  28. Parah, S. A., Sheikh, J. A., Loan, N. A., & Bhat, G. M. (2017). A robust and computationally efficient digital watermarking technique using inter block pixel differencing. In Multimedia forensics and security (pp. 223–252). Springer, Cham.

  29. Jana, B. (2016). High payload reversible data hiding scheme using weighted matrix. Optik-International Journal for Light and Electron Optics, 127(6), 3347–3358.

    Article  Google Scholar 

  30. Jana, B., Giri, D., & Mondal, S. K. (2018). Dual image based reversible data hiding scheme using (7, 4) Hamming code. Multimedia Tools and Applications, 77(1), 763–785.

    Article  Google Scholar 

  31. Nguyen, T. D., & Le, H. D. (2021). A reversible data hiding scheme based on (5, 3) Hamming code using extra information on overlapped pixel blocks of grayscale images. Multimedia Tools and Applications, 80, 13099–13120.

    Article  Google Scholar 

  32. University of California, San Diego. STARE Image Database. Retrieved May 2, 2018 from https://cecas.clemson.edu/~ahoover/stare/.

  33. Nottingham Trent University, UK. UCID Image Database. Retrieved May 2, 2018 from http://jasoncantarella.com/downloads/ucid.v2.tar.gz.

  34. University of Southern California. The USC-SIPI Image Database. Retrieved May 2, 2018 from http://sipi.usc.edu/database/database.php.

  35. Funt et al. (2017). HDR Dataset Computational Vision Lab Computing Science, Simon Fraser University, Burnaby, BC, Canada. Retrieved May 2, 2017 from http://www.cs.sfu.ca/~colour/data/funt_hdr/.

  36. Martin, D., Fowlkes, C., Tal, D., & Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Proceedings Eighth IEEE international conference on computer vision (p. 416). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biswapati Jana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pal, P., Jana, B. & Bhaumik, J. An Image Authentication and Tampered Detection Scheme Exploiting Local Binary Pattern Along with Hamming Error Correcting Code. Wireless Pers Commun 121, 939–961 (2021). https://doi.org/10.1007/s11277-021-08666-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08666-y

Keywords

Navigation