Abstract
This manuscript presents the novel design of Split Ring Resonator (SRR) and rectangular stubs loaded Circular Fractal Antenna for multiband wireless applications. Initially, the antenna is designed by introducing various fractal iterations from 0th to 3rd and the final iteration is designated as Antenna-I. This antenna exhibits the maximum bandwidth of 8.35 GHz from 4.12 to 12.47 GHz. Further, this bandwidth has been enhanced and inflated as 10.29 GHz from 2.07 to 12.36 GHz, by introducing the SRR structure in the geometry of 3rd iteration of the designed antenna and designated as Antenna-II. Similarly, to further improve the performance parameters the rectangular stubs are introduced in the structure of Antenna-II to obtain the proposed antenna final geometry called Antenna-III. The final structure of the proposed antenna shows improved impedance matching and exhibits the bandwidth of 11.43 GHz (1.30–12.73 GHz) and 5.17 GHz (14.83–20.0 GHz) in 1 to 20 GHz frequency range. The total dimensions of the proposed antenna is 36 × 32 mm2 and can be valuable for different multiband wireless applications such as a DCS, PCS, UMTS, Bluetooth, WiMAX, GSM, IEEE 802.16e, ITU, IEEE802.11a (WLAN)/b/g, C/S/X/Ku and K band.
Similar content being viewed by others
References
Puente, C., Romeu, J., Bartoleme, R., & Pous, R. (1996). Fractal multiband antenna based on Sierpinski gasket. Electronic Letters, 32, 1–2
Baliarda, C. P., Romeu, J., & Cardama, A. (2000). The Koch monopole: A small fractal antenna. IEEE Transactions on Antennas and Propagation, 48(11), 1773–1781
Kaur, K., & Sivia, J. S. (2017). A compact hybrid multiband antenna for wireless applications. Springer International Journal of Wireless Personal Communication, 97(4), 5917–5927
Cohen, N. (1997). Fractal antenna applications in wireless telecommunications. In Professional program proceedings of electronics industries forum of New England. IEEE (pp. 43–49).
Kimouche, H., Zemmour, H., & Atrouz, B. (2009). Dual-band fractal shape antenna design for RFID applications. Electronic Letters, 45(21), 1–3
Mandelbrot, B. B. (1983). The Fractal Geometry of Nature. Freeman and Company: New York, W.H.
Sivia, J. S., Kaur, G., & Sarao, A. K. (2017). A modified Sierpinski carpet fractal antenna for multiband applications. Wireless Personal Communications, 95(4), 4269–4279
Yang, X., Chiochetti, J., Papadopoulos, D., & Susman, L. (1999). Fractal antenna elements and arrays. Applied Microwave and Wireless, 5(11), 34–46
Jaggard, D. L., Kritikos, H. N., & Jaggard, D. L. (1990). On fractal electrodynamics. Proceeding of recent advances in electromagnetic theory. (pp. 183–224). New York: Springer.
Kalra, D. (2007). Antenna miniaturization using fractals. M.Sc. Thesis, University of Deemed, India.
Ramadan, A., Kabalan, K. Y., El-Hajj, A., Khoury, S., & Al- Husseini, M. (2009). A reconfigurable U-koch microstrip antenna for wireless applications. Progress In Electromagnetics Research, 93, 355–367
Viani, F., Salucci, M., Robol, F., & Massa, A. (2012). Multiband fractal Zigbee/WLAN antenna for ubiquitous wireless environments. Journal of Electomagnetic Waves and Applications, 26(11–12), 1554–1562.
Lizzi, L., Azaro, R., Oliveri, G., & Massa, A. (2013). Multiband fractal antenna for wireless communication system for emergency management. Journal of Electomagnetic Waves and Applications, 26(1), 1–11.
Sidhu, A. K., & Sivia, J. S. (2018). A novel design of wideband Koch like sided sierpinski square carpet multifractal antenna. Applied Computational Electromagnetics Society Journal, 33(8), 873–879.
Bangi, I. S., & Sivia, J. S. (2018). Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications, Urban & Fischer. AEU-International Journal of Electronics and Communications, 85, 159–168.
Sivia, J. S., Bhatia, S. S. (2015). Design of fractal based microstrip rectangular patch antenna for multiband applications. In IEEE international advance computing conference (pp. 712–715).
Varamini, G., Kushtkar, A., & Moghadasi, M. N. (2018). Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification. AEU International Journal of Electronics and Communications, 83, 213–221
Varamini, G., Khustkar, A., Daryasafar, N., & Moghadasi, M. N. (2018). Microstrip Sierpinski fractal carpet for slot antenna with metamaterial loads for dual band wireless application. AEU International Journal of Electronics and Communications, 84, 93–99
Pandeeswari, R., & Raghavan, S. (2014). Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching. Microwave and Optical Technology Letters, 56(10), 2388–2392
Sharma, N., & Bhatia, S. S. (2019). Double split labyrinth resonator-based CPW-fed hybrid fractal antennas for PCS/UMTS/WLAN/Wi-MAX applications. Journal of Electromagnetic Waves and Applications, 33(18), 2476–2498
Arora, C., Pattnaik, S. S., & Baral, R. N. (2015). SRR inspired microstrip patch antenna array. Progress in Electromagnetics Research, 58, 89–96
Rajeshkumar, V., & Raghavan, S. (2015). SRR based polygon ring penta-band fractal antenna for GSM/WLAN/WiMAX/ITU band applications. Microwave and Optical Technology Letters, 57(6), 1301–1305
Kumar, N., & Gupta, S. C. (2015). Analyzing the performance of microstrip patch antenna with metamaterials cover by varying the distance and dielectric constant in between. Journal of Electromagnetic Waves and Applications, 29(18), 2428–2443
Ziolkowski, R. W., Jin, P., & Lin, C. C. (2011). Metamaterial inspired engineering of antennas. Proceedings of IEEE, 99(10), 1720–1731
Sharma, N., & Bhatia, S. S. (2018). Split ring based multiband hybrid fractal antenna for wireless applications. International Journal of Electronics and Communications (AEU), 93, 39–52
Kaur, M., & Sivia, J. S. (2019). Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU-International Journal of Electronics and Communications, 99, 14–24
Bangi, I. S., & Sivia, J. S. (2019). Moore, Minkowski and Koch curves based hybrid fractal antenna for multiband applications. Wireless Personal Communications, 108, 2435–2448
Hu, J. R., & Li, J. S. (2014). Compact microstrip antennas using SRR structure ground plane. Microwave and Optical Technology Letters, 56(1), 117–120
Rajkumar, R., & Ushakiran, K. (2017). A metamaterial inspired compact open split ring resonator antenna for multiband operation. Wireless personal communication, 97, 951–965
Kaur, M., & Sivia, J. S. (2020). Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm. International Journal of RF and Microwave Computer-Aided Engineering, 30(1), e22000
Jindal, S., Sivia, J. S., & Bindra, H. S. (2019). Hybrid fractal antenna using meander and Minkowski curves for wireless applications. Wireless Personal Communications, 109, 1471–1490
Sharma, N., & Bhatia, S. S. (2019). Metamaterial inspired fidget spinner shaped antenna based on parasitic split ring resonator for multi-standard wireless applications. Journal of Electromagnetic Waves and Applications. https://doi.org/10.1080/09205071.2019.1654412
Elavarasi, C., & Shanmuganantham, T. (2017). Multiband SRR loaded Koch star fractal antenna. Alexandria Engineering Journal, 57(3), 1549–1555
Sharma, V., Lakwar, N., Kumar, N., & Garg, T. (2017). A multiband low-cost fractal antenna based on parasitic split ring resonators. IET Microwave Antenna and Propagation, 12(6), 913–919
Bhatia, S. S., Sivia, J. S., & Sharma, N. (2018). An optimal design of fractal antenna with modified ground structure for wideband applications. Wireless Personal Communication, 103, 1977–1991
Rajeshkumar, V., & Raghavan, S. (2015). A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications. International Journal of Electronics and Communications (AEU), 69(1), 274–280
Sharma, N., Bhatia, S. S., Sharma, V., & Sivia, J. S. (2019). An octagonal shaped monopole antenna for UWB applications with band notch characteristics. Wireless Personal Communication, 111, 1977–1997
Chen, L., Ren, X., Zin, Y. Z., & Wang, Z. (2013). Broadband CPW-fed circularly polarized antenna with an irregular slot for 2.45 GHz RFID reader. Progress In Electromagnetics Research Letters, 41, 77–86
Ray, K. P., Thakur, S. S., & Deshmukh, R. A. (2012). Wideband L-shaped printed monopole antenna. International Journal of Electronics and Communications (AEU), 66, 693–696
Bhatia, S. S., Sahni, A., & Rana, S. B. (2018). A novel design of compact monopole antenna with defected ground plane for wideband applications. Progress in Electromagnetics Research M, 70, 21–31
Sadat, S., Fardis, M., Geran, F., & Dadashzadeh, G. (2007). A compact microstrip square ring slot antenna for UWB applications. Progress in Electromagnetics Research, 67, 173–179
Dastranj, A., & Biguesh, M. (2010). Broadband coplanar waveguide-fed wide-slot antenna. Progress in Electromagnetics Research, 15, 89–101
Mitra, D., Das, D., & Bhadra Chaudhuri, S. R. (2012). Bandwidth enhancement of microstrip line and CPW-fed asymmetrical slot antennas. Progress In Electromagnetics Research, 32, 69–79
Weng, W. C., & Hung, C. L. (2014). An H-fractal antenna for multiband applications. IEEE Antenna and Wireless Propagation Letter, 13, 1705–1708
Lee, J. N., & Park, J. K. (2009). Compact UWB chip antenna design using the coupling concept. Progress in Electromagnetics Research, 90, 341–351
Yassen, M. T., Hussan, M. R., Hammas, H. A., Saedi, H. A., & Ali, J. K. (2019). A dual band printed antenna design based on annular Koch snowflake slot structure. Wireless Personal Communication, 104(2), 649–662
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kaur, N., Sivia, J.S. & Kumar, M. SRR and Rectangular Stubs Loaded Novel Fractal Antenna Realization for Multiband Wireless Applications. Wireless Pers Commun 120, 515–533 (2021). https://doi.org/10.1007/s11277-021-08472-6
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-021-08472-6