[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

SRR and Rectangular Stubs Loaded Novel Fractal Antenna Realization for Multiband Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This manuscript presents the novel design of Split Ring Resonator (SRR) and rectangular stubs loaded Circular Fractal Antenna for multiband wireless applications. Initially, the antenna is designed by introducing various fractal iterations from 0th to 3rd and the final iteration is designated as Antenna-I. This antenna exhibits the maximum bandwidth of 8.35 GHz from 4.12 to 12.47 GHz. Further, this bandwidth has been enhanced and inflated as 10.29 GHz from 2.07 to 12.36 GHz, by introducing the SRR structure in the geometry of 3rd iteration of the designed antenna and designated as Antenna-II. Similarly, to further improve the performance parameters the rectangular stubs are introduced in the structure of Antenna-II to obtain the proposed antenna final geometry called Antenna-III. The final structure of the proposed antenna shows improved impedance matching and exhibits the bandwidth of 11.43 GHz (1.30–12.73 GHz) and 5.17 GHz (14.83–20.0 GHz) in 1 to 20 GHz frequency range. The total dimensions of the proposed antenna is 36 × 32 mm2 and can be valuable for different multiband wireless applications such as a DCS, PCS, UMTS, Bluetooth, WiMAX, GSM, IEEE 802.16e, ITU, IEEE802.11a (WLAN)/b/g, C/S/X/Ku and K band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Puente, C., Romeu, J., Bartoleme, R., & Pous, R. (1996). Fractal multiband antenna based on Sierpinski gasket. Electronic Letters, 32, 1–2

    Article  Google Scholar 

  2. Baliarda, C. P., Romeu, J., & Cardama, A. (2000). The Koch monopole: A small fractal antenna. IEEE Transactions on Antennas and Propagation, 48(11), 1773–1781

    Article  Google Scholar 

  3. Kaur, K., & Sivia, J. S. (2017). A compact hybrid multiband antenna for wireless applications. Springer International Journal of Wireless Personal Communication, 97(4), 5917–5927

    Article  Google Scholar 

  4. Cohen, N. (1997). Fractal antenna applications in wireless telecommunications. In Professional program proceedings of electronics industries forum of New England. IEEE (pp. 43–49).

  5. Kimouche, H., Zemmour, H., & Atrouz, B. (2009). Dual-band fractal shape antenna design for RFID applications. Electronic Letters, 45(21), 1–3

    Article  Google Scholar 

  6. Mandelbrot, B. B. (1983). The Fractal Geometry of Nature. Freeman and Company: New York, W.H.

    Book  Google Scholar 

  7. Sivia, J. S., Kaur, G., & Sarao, A. K. (2017). A modified Sierpinski carpet fractal antenna for multiband applications. Wireless Personal Communications, 95(4), 4269–4279

    Article  Google Scholar 

  8. Yang, X., Chiochetti, J., Papadopoulos, D., & Susman, L. (1999). Fractal antenna elements and arrays. Applied Microwave and Wireless, 5(11), 34–46

    Google Scholar 

  9. Jaggard, D. L., Kritikos, H. N., & Jaggard, D. L. (1990). On fractal electrodynamics. Proceeding of recent advances in electromagnetic theory. (pp. 183–224). New York: Springer.

    Chapter  Google Scholar 

  10. Kalra, D. (2007). Antenna miniaturization using fractals. M.Sc. Thesis, University of Deemed, India.

  11. Ramadan, A., Kabalan, K. Y., El-Hajj, A., Khoury, S., & Al- Husseini, M. (2009). A reconfigurable U-koch microstrip antenna for wireless applications. Progress In Electromagnetics Research, 93, 355–367

    Article  Google Scholar 

  12. Viani, F., Salucci, M., Robol, F., & Massa, A. (2012). Multiband fractal Zigbee/WLAN antenna for ubiquitous wireless environments. Journal of Electomagnetic Waves and Applications, 26(11–12), 1554–1562.

    Article  Google Scholar 

  13. Lizzi, L., Azaro, R., Oliveri, G., & Massa, A. (2013). Multiband fractal antenna for wireless communication system for emergency management. Journal of Electomagnetic Waves and Applications, 26(1), 1–11.

    Google Scholar 

  14. Sidhu, A. K., & Sivia, J. S. (2018). A novel design of wideband Koch like sided sierpinski square carpet multifractal antenna. Applied Computational Electromagnetics Society Journal, 33(8), 873–879.

    Google Scholar 

  15. Bangi, I. S., & Sivia, J. S. (2018). Minkowski and Hilbert curves based hybrid fractal antenna for wireless applications, Urban & Fischer. AEU-International Journal of Electronics and Communications, 85, 159–168.

    Google Scholar 

  16. Sivia, J. S., Bhatia, S. S. (2015). Design of fractal based microstrip rectangular patch antenna for multiband applications. In IEEE international advance computing conference (pp. 712–715).

  17. Varamini, G., Kushtkar, A., & Moghadasi, M. N. (2018). Compact and miniaturized microstrip antenna based on fractal and metamaterial loads with reconfigurable qualification. AEU International Journal of Electronics and Communications, 83, 213–221

    Article  Google Scholar 

  18. Varamini, G., Khustkar, A., Daryasafar, N., & Moghadasi, M. N. (2018). Microstrip Sierpinski fractal carpet for slot antenna with metamaterial loads for dual band wireless application. AEU International Journal of Electronics and Communications, 84, 93–99

    Article  Google Scholar 

  19. Pandeeswari, R., & Raghavan, S. (2014). Broadband monopole antenna with split ring resonator loaded substrate for good impedance matching. Microwave and Optical Technology Letters, 56(10), 2388–2392

    Article  Google Scholar 

  20. Sharma, N., & Bhatia, S. S. (2019). Double split labyrinth resonator-based CPW-fed hybrid fractal antennas for PCS/UMTS/WLAN/Wi-MAX applications. Journal of Electromagnetic Waves and Applications, 33(18), 2476–2498

    Article  Google Scholar 

  21. Arora, C., Pattnaik, S. S., & Baral, R. N. (2015). SRR inspired microstrip patch antenna array. Progress in Electromagnetics Research, 58, 89–96

    Article  Google Scholar 

  22. Rajeshkumar, V., & Raghavan, S. (2015). SRR based polygon ring penta-band fractal antenna for GSM/WLAN/WiMAX/ITU band applications. Microwave and Optical Technology Letters, 57(6), 1301–1305

    Article  Google Scholar 

  23. Kumar, N., & Gupta, S. C. (2015). Analyzing the performance of microstrip patch antenna with metamaterials cover by varying the distance and dielectric constant in between. Journal of Electromagnetic Waves and Applications, 29(18), 2428–2443

    Article  Google Scholar 

  24. Ziolkowski, R. W., Jin, P., & Lin, C. C. (2011). Metamaterial inspired engineering of antennas. Proceedings of IEEE, 99(10), 1720–1731

    Article  Google Scholar 

  25. Sharma, N., & Bhatia, S. S. (2018). Split ring based multiband hybrid fractal antenna for wireless applications. International Journal of Electronics and Communications (AEU), 93, 39–52

    Article  Google Scholar 

  26. Kaur, M., & Sivia, J. S. (2019). Minkowski, Giuseppe Peano and Koch curves based design of compact hybrid fractal antenna for biomedical applications using ANN and PSO. AEU-International Journal of Electronics and Communications, 99, 14–24

    Google Scholar 

  27. Bangi, I. S., & Sivia, J. S. (2019). Moore, Minkowski and Koch curves based hybrid fractal antenna for multiband applications. Wireless Personal Communications, 108, 2435–2448

    Article  Google Scholar 

  28. Hu, J. R., & Li, J. S. (2014). Compact microstrip antennas using SRR structure ground plane. Microwave and Optical Technology Letters, 56(1), 117–120

    Article  Google Scholar 

  29. Rajkumar, R., & Ushakiran, K. (2017). A metamaterial inspired compact open split ring resonator antenna for multiband operation. Wireless personal communication, 97, 951–965

    Article  Google Scholar 

  30. Kaur, M., & Sivia, J. S. (2020). Giuseppe Peano and Cantor set fractals based miniaturized hybrid fractal antenna for biomedical applications using artificial neural network and firefly algorithm. International Journal of RF and Microwave Computer-Aided Engineering, 30(1), e22000

    Article  Google Scholar 

  31. Jindal, S., Sivia, J. S., & Bindra, H. S. (2019). Hybrid fractal antenna using meander and Minkowski curves for wireless applications. Wireless Personal Communications, 109, 1471–1490

    Article  Google Scholar 

  32. Sharma, N., & Bhatia, S. S. (2019). Metamaterial inspired fidget spinner shaped antenna based on parasitic split ring resonator for multi-standard wireless applications. Journal of Electromagnetic Waves and Applications. https://doi.org/10.1080/09205071.2019.1654412

    Article  Google Scholar 

  33. Elavarasi, C., & Shanmuganantham, T. (2017). Multiband SRR loaded Koch star fractal antenna. Alexandria Engineering Journal, 57(3), 1549–1555

    Article  Google Scholar 

  34. Sharma, V., Lakwar, N., Kumar, N., & Garg, T. (2017). A multiband low-cost fractal antenna based on parasitic split ring resonators. IET Microwave Antenna and Propagation, 12(6), 913–919

    Article  Google Scholar 

  35. Bhatia, S. S., Sivia, J. S., & Sharma, N. (2018). An optimal design of fractal antenna with modified ground structure for wideband applications. Wireless Personal Communication, 103, 1977–1991

    Article  Google Scholar 

  36. Rajeshkumar, V., & Raghavan, S. (2015). A compact metamaterial inspired triple band antenna for reconfigurable WLAN/WiMAX applications. International Journal of Electronics and Communications (AEU), 69(1), 274–280

    Article  Google Scholar 

  37. Sharma, N., Bhatia, S. S., Sharma, V., & Sivia, J. S. (2019). An octagonal shaped monopole antenna for UWB applications with band notch characteristics. Wireless Personal Communication, 111, 1977–1997

    Article  Google Scholar 

  38. Chen, L., Ren, X., Zin, Y. Z., & Wang, Z. (2013). Broadband CPW-fed circularly polarized antenna with an irregular slot for 2.45 GHz RFID reader. Progress In Electromagnetics Research Letters, 41, 77–86

    Article  Google Scholar 

  39. Ray, K. P., Thakur, S. S., & Deshmukh, R. A. (2012). Wideband L-shaped printed monopole antenna. International Journal of Electronics and Communications (AEU), 66, 693–696

    Article  Google Scholar 

  40. Bhatia, S. S., Sahni, A., & Rana, S. B. (2018). A novel design of compact monopole antenna with defected ground plane for wideband applications. Progress in Electromagnetics Research M, 70, 21–31

    Article  Google Scholar 

  41. Sadat, S., Fardis, M., Geran, F., & Dadashzadeh, G. (2007). A compact microstrip square ring slot antenna for UWB applications. Progress in Electromagnetics Research, 67, 173–179

    Article  Google Scholar 

  42. Dastranj, A., & Biguesh, M. (2010). Broadband coplanar waveguide-fed wide-slot antenna. Progress in Electromagnetics Research, 15, 89–101

    Article  Google Scholar 

  43. Mitra, D., Das, D., & Bhadra Chaudhuri, S. R. (2012). Bandwidth enhancement of microstrip line and CPW-fed asymmetrical slot antennas. Progress In Electromagnetics Research, 32, 69–79

    Article  Google Scholar 

  44. Weng, W. C., & Hung, C. L. (2014). An H-fractal antenna for multiband applications. IEEE Antenna and Wireless Propagation Letter, 13, 1705–1708

    Article  Google Scholar 

  45. Lee, J. N., & Park, J. K. (2009). Compact UWB chip antenna design using the coupling concept. Progress in Electromagnetics Research, 90, 341–351

    Article  Google Scholar 

  46. Yassen, M. T., Hussan, M. R., Hammas, H. A., Saedi, H. A., & Ali, J. K. (2019). A dual band printed antenna design based on annular Koch snowflake slot structure. Wireless Personal Communication, 104(2), 649–662

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navjot Kaur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, N., Sivia, J.S. & Kumar, M. SRR and Rectangular Stubs Loaded Novel Fractal Antenna Realization for Multiband Wireless Applications. Wireless Pers Commun 120, 515–533 (2021). https://doi.org/10.1007/s11277-021-08472-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-08472-6

Keywords

Navigation