[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimal Control of Malware Spreading Model with Tracing and Patching in Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks (WSNs), which emerge from an un-attended environment monitoring, are deployed for monitoring purposes in different environments. But, WSNs suffer from vulnerable malware to propagate via exploiting message exchange among the sensor nodes. To draw attention to this issue, this paper investigates an optimal control strategy to reduce the spread of malware in wireless sensor networks. A node-based epidemic model Susceptible-Infected-Traced-Patched-Susceptible is analyzed. The optimal control strategies are analytically investigated. The proposed optimal strategy achieves a low level of infections at a low cost. Finally, numerical illustrations are presented to show the spread of malware through infected nodes which can be effectively suppressed by adopting the suitable optimal control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mishra, B. K., & Keshri, N. (2013). Mathematical model on the transmission of worms in wireless sensor network. Applied Mathematical Modelling, 37(6), 4103–4111.

    Article  MathSciNet  Google Scholar 

  2. Tang, S., & Mark, B. L. (2009). Analysis of virus spread in wireless sensor networks: An epidemic model. In 2009 7th International workshop on design of reliable communication networks (pp. 86–91). IEEE.

  3. Zennaro, M., Pehrson, B., & Bagula, A. (2008). Wireless sensor networks: A great opportunity for researchers in developing countries. In Proceedings of WCITD2008 conference, Pretoria, South Africa (Vol. 67).

  4. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  5. Singh, A., & Snigdh, I. (2017). Modelling failure conditions in zigbee based wireless sensor networks. International Journal of Wireless and Microwave Technologies (IJWMT), 2, 25–34.

    Article  Google Scholar 

  6. Feng, L., Song, L., Zhao, Q., & Wang, H. (2015). Modeling and stability analysis of worm propagation in wireless sensor network. Mathematical Problems in Engineering,. https://doi.org/10.1155/2015/129598.

    Article  MathSciNet  MATH  Google Scholar 

  7. Khayam, S. A., & Radha, H. (2005). A topologically-aware worm propagation model for wireless sensor networks. In 25th IEEE international conference on distributed computing systems workshops (pp. 210–216). IEEE.

  8. De, P., Liu, Y. and Das, S. K. (2007). An epidemic theoretic framework for evaluating broadcast protocols in wireless sensor networks. In 2007 IEEE International conference on mobile adhoc and sensor systems (pp. 1–9). IEEE.

  9. De, P., Liu, Y., & Das, S. K. (2008). An epidemic theoretic framework for vulnerability analysis of broadcast protocols in wireless sensor networks. IEEE Transactions on Mobile Computing, 8(3), 413–425.

    Article  Google Scholar 

  10. Wang, X., Li, Q., & Li, Y. (2010). EiSIRS: a formal model to analyze the dynamics of worm propagation in wireless sensor networks. Journal of Combinatorial Optimization, 20(1), 47–62.

    Article  MathSciNet  Google Scholar 

  11. Ya-Qi, W., & Xiao-Yuan, Y. (2013). Virus spreading in wireless sensor networks with a medium access control mechanism. Chinese Physics B, 22(4), 040206.

    Article  Google Scholar 

  12. Mishra, B. K., Srivastava, S. K., & Mishra, B. K. (2014). A quarantine model on the spreading behavior of worms in wireless sensor network. Transaction on IoT and Cloud Computing, 2(1), 1–12.

    Article  Google Scholar 

  13. Mishra, B. K., & Tyagi, I. (2014). Defending against malicious threats in wireless sensor network: A mathematical model. International Journal of Information Technology and Computer Science, 6(3), 12–19.

    Article  Google Scholar 

  14. Zhang, Z., & Si, F. (2014). Dynamics of a delayed SEIRS-V model on the transmission of worms in a wireless sensor network. Advances in Difference Equations, 2014(1), 295.

    Article  MathSciNet  Google Scholar 

  15. Nwokoye, C. H., Ozoegwu, G. C., & Ejiofor, V. E. (2017). Pre-quarantine approach for defense against propagation of malicious objects in networks. International Journal of Computer Network and Information Security, 9(2), 43.

    Article  Google Scholar 

  16. Nwokoye, C. H., Mbeledogu, N. N., & Ejimofor, I. A. (2017). The Impact of Sensor Area on Worm Propagation Using SEIR and SEIR-V Models: A Preliminary Investigation. International Journal of Wireless and Microwave Technologies(IJWMT),. https://doi.org/10.5815/ijwmt.2017.06.04.

    Article  Google Scholar 

  17. Biswal, S. R., & Swain, S. K. (2019). Model for study of malware propagation dynamics in wireless sensor network. In 2019 3rd International conference on trends in electronics and informatics (ICOEI) (pp. 647–653). India: Tirunelveli.

  18. Shen, S., Zhou, H., Feng, S., Liu, J., & Cao, Q. (2019). SNIRD: Disclosing rules of malware spread in heterogeneous wireless sensor networks. IEEE Access, 7, 92881–92892.

    Article  Google Scholar 

  19. Singh, A., Awasthi, A. K., & Singh, K. (2018). Modeling and analysis of worm propagation in wireless sensor networks. Wireless Personal Communication, 98, 2535–2551.

    Article  Google Scholar 

  20. Awasthi S., Kumar N. and Srivastava P. K. (2020). A study of epidemic approach for worm propagation in wireless sensor network. In Solanki V., Hoang M., Lu Z., Pattnaik P. (Eds.), Intelligent computing in engineering. Advances in intelligent systems and computing, vol 1125. Springer, Singapore.

  21. Batista, F. K., Martín del Rey, A., & Queiruga-Dios, A. (2020). A new individual-based model to simulate malware propagation in wireless sensor networks. Mathematics, 8, 410.

    Article  Google Scholar 

  22. Zhang, T., Yang, L. X., Yang, X., Wu, Y., & Tang, Y. Y. (2017). Dynamic malware containment under an epidemic model with alert. Physica A: Statistical Mechanics and its Applications, 470, 249–260.

    Article  MathSciNet  Google Scholar 

  23. Li, P., Yang, X., Wu, Y., He, W., & Zhao, P. (2018). Discount pricing in word-of-mouth marketing: An optimal control approach. Physica A: Statistical Mechanics and its Applications, 505, 512–522.

    Article  MathSciNet  Google Scholar 

  24. Li, P., Yang, X., Xiong, Q., Wen, J., & Tang, Y. Y. (2018). Defending against the advanced persistent threat: An optimal control approach. Security and Communication Networks,. https://doi.org/10.1155/2018/2975376.

    Article  Google Scholar 

  25. Van Mieghem, P., Omic, J., & Kooij, R. (2009). Virus spread in networks. IEEE/ACM Transactions on Networking (TON), 17(1), 1–14.

    Article  Google Scholar 

  26. Van Mieghem, P. (2011). The N-intertwined SIS epidemic network model. Computing, 93(2–4), 147–169.

    Article  MathSciNet  Google Scholar 

  27. Dadlani, A., Kumar, M. S., Maddi, M. G., & Kim, K. (2017). Mean-field dynamics of inter-switching memes competing over multiplex social networks. IEEE Communications Letters, 21(5), 967–970.

    Article  Google Scholar 

  28. Muthukumar, S., Muthukrishnan, S., & Chinnadurai, V. (2019). Dynamic behaviour of competing memes’ spread with alert influence in multiplex social-networks. Computing, 101(8), 1177–1197.

    Article  MathSciNet  Google Scholar 

  29. Sahneh, F. D., Scoglio, C., & Van Mieghem, P. (2013). Generalized epidemic mean-field model for spreading processes over multilayer complex networks. IEEE/ACM Transactions on Networking (TON), 21(5), 1609–1620.

    Article  Google Scholar 

  30. Yang, L. X., Draief, M., & Yang, X. (2016). The optimal dynamic immunization under a controlled heterogeneous node-based SIRS model. Physica A: Statistical Mechanics and its Applications, 450, 403–415.

    Article  MathSciNet  Google Scholar 

  31. Sahneh, F. D., Vajdi, A., Shakeri, H., Fan, F., & Scoglio, C. (2017). GEMFsim: A stochastic simulator for the generalized epidemic modeling framework. Journal of Computational Science, 22, 36–44.

    Article  Google Scholar 

  32. Li, P., Yang, L. X., Yang, X., Zhong, X., Wen, J., & Xiong, Q. (2019). Energy-efficient patching strategy for wireless sensor networks. Sensors, 19(2), 262.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Editor-in-Chief and anonymous referees for the various suggestions which have led to an improvement in both the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumathi Muthukumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthukrishnan, S., Muthukumar, S. & Chinnadurai, V. Optimal Control of Malware Spreading Model with Tracing and Patching in Wireless Sensor Networks. Wireless Pers Commun 117, 2061–2083 (2021). https://doi.org/10.1007/s11277-020-07959-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07959-y

Keywords

Navigation