[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Pre-processing of Retinal Images for Removal of Outliers

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Early diagnosis of diseases related with retina such as glaucoma is of utmost importance in current scenario as it is the second most prevailing cause of irreversible blindness over the world and is expected to increase further in near future. It is commonly diagnosed using retinal images which are acquired by digital fundus cameras. But the acquired images may be prone to certain outliers that create hindrance in diagnosis of glaucoma by tempering the accuracy. These outliers include retinal vessels, low contrast of images and uneven illumination that deteriorates the performance of disc and cup segmentation which are the key indicators to diagnose glaucoma. Thus, pre-processing of retinal images to remove outliers plays a significant role in diagnosis. This paper presents an approach for pre-processing the retinal fundus image followed by its comparison with state of the art. Based on the experimental analysis the performance of the proposed approach is found to be better than the state of the art based on the analysis using metrics such as peak signal to ratio, mean square error and structural similarity index. Further, the proposed approach has been compared with state of the art using metrics such as Jaccard index and dice similarity on the basis of segmentation outcomes on different pre-processing approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abràmoff, M. D., Garvin, M. K., & Sonka, M. (2010). Retinal imaging and image analysis. IEEE Reviews in Biomedical Engineering, 3, 169–208.

    Article  Google Scholar 

  2. Sekhar, S., Al-Nuaimy, W., & Nandi, A. K. (2008). Automated localisation of optic disk and fovea in retinal fundus images. In Signal processing conference, 2008 16th European (pp. 1–5). IEEE.

  3. Doi, K. (2007). Computer-aided diagnosis in medical imaging: Historical review, current status and future potential. Computerized Medical Imaging and Graphics, 31(4–5), 198–211.

    Article  Google Scholar 

  4. Kaur, R., Juneja, M., & Mandal, A. K. (2018). A comprehensive review of denoising techniques for abdominal CT images. Multimedia Tools and Applications, 77, 1–36.

    Article  Google Scholar 

  5. Garg, G., & Juneja, M. (2018). A survey of denoising techniques for multi-parametric prostate MRI. Multimedia Tools and Applications, 78, 1–34.

    Google Scholar 

  6. Mirza, H., Thai, H., & Nakao, Z. (2008). Digital video watermarking based on RGB color channels and principal component analysis. In International conference on knowledge-based and intelligent information and engineering systems (pp. 125–132). Berlin, Heidelberg: Springer.

  7. Lalonde, M., Beaulieu, M., & Gagnon, L. (2001). Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Transactions on Medical Imaging, 20(11), 1193–1200.

    Article  Google Scholar 

  8. Walter, T., & Klein, J. C. (2001). Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques. In International symposium on medical data analysis (pp. 282–287). Berlin, Heidelberg: Springer.

  9. Liu, J., Wong, D. W. K., Lim, J. H., Jia, X., Yin, F., Li, H., Xiong, W., & Wong, T. Y. (2008). Optic cup and disk extraction from retinal fundus images for determination of cup-to-disc ratio. In 3rd IEEE conference on industrial electronics and applications, 2008. ICIEA 2008 (pp. 1828–1832). IEEE.

  10. Wong, D. W. K., Liu, J., Lim, J. H., Jia, X., Yin, F., Li, H., & Wong, T. Y. (2008). Level-set based automatic cup-to-disc ratio determination using retinal fundus images in ARGALI. In Engineering in medicine and biology society, 2008. EMBS 2008. 30th annual international conference of the IEEE (pp. 2266–2269). IEEE.

  11. Wong, D. W. K., Liu, J., Lim, J. H., Tan, N. M., Zhang, Z., Lu, S., Li, H., Teo, M. H., Chan, K. L., & Wong, T. Y. (2009). Intelligent fusion of cup-to-disc ratio determination methods for glaucoma detection in ARGALI. In Engineering in medicine and biology society, 2009. EMBC 2009. Annual international conference of the IEEE (pp. 5777–5780). IEEE.

  12. Zhang, Z., Liu, J., Cherian, N. S., Sun, Y., Lim, J. H., Wong, W. K., Tan, N. M., Lu, S., Li, H., & Wong, T. Y. (2009). Convex hull based neuro-retinal optic cup ellipse optimization in glaucoma diagnosis. In Engineering in medicine and biology society, 2009. EMBC 2009. Annual international conference of the IEEE (pp. 1441–1444). IEEE.

  13. Murthi, A., & Madheswaran, M. (2012). Enhancement of optic cup to disc ratio detection in glaucoma diagnosis. In 2012 international conference on computer communication and informatics (ICCCI) (pp. 1–5). IEEE.

  14. Joshi, G. D., Sivaswamy, J., & Krishnadas, S. R. (2012). Depth discontinuity-based cup segmentation from multiview color retinal images. IEEE Transactions on Biomedical Engineering, 59(6), 1523–1531.

    Article  Google Scholar 

  15. Noor, N. M., Khalid, N. E. A., & Ariff, N. M. (2013). Optic cup and disc color channel multi-thresholding segmentation. In 2013 IEEE international conference on control system, computing and engineering (pp. 530–534). IEEE.

  16. GeethaRamani, R., & Dhanapackiam, C. (2014). Automatic localization and segmentation of optic disc in retinal fundus images through image processing techniques. In 2014 international conference on recent trends in information technology (ICRTIT) (pp. 1–5). IEEE.

  17. Agarwal, A., Gulia, S., Chaudhary, S., Dutta, M. K., Travieso, C. M., & Alonso-Hernández, J. B. (2015). A novel approach to detect glaucoma in retinal fundus images using cup-disk and rim-disk ratio. In 2015 4th international work conference on bioinspired intelligence (IWOBI) (pp. 139–144). IEEE.

  18. Zilly, J. G., Buhmann, J. M., & Mahapatra, D. (2015). Boosting convolutional filters with entropy sampling for optic cup and disc image segmentation from fundus images. In International workshop on machine learning in medical imaging (pp. 136–143). Cham: Springer.

  19. Juneja, M., Singh, S., Agarwal, N., Bali, S., Gupta, S., Thakur, N., et al. (2019). Automated detection of glaucoma using deep learning convolution network (G-net). Multimedia Tools and Applications, 79, 1–23.

    Google Scholar 

  20. Efford, N. (2000). Digital image processing: A practical introduction using java (with CD-ROM). Boston: Addison-Wesley Longman Publishing Co., Inc.

    Google Scholar 

  21. Osareh, A., Mirmehdi, M., Thomas, B., & Markham, R. (2002). Comparison of colour spaces for optic disc localisation in retinal images. In International conference on pattern recognition (vol. 16, pp. 743–746).

  22. Kavitha, S., Karthikeyan, S., & Duraiswamy, K. (2010). Neuroretinal rim quantification in fundus images to detect glaucoma. IJCSNS International Journal of Computer Science and Network Security, 10(6), 134–140.

    Google Scholar 

  23. Joshi, G. D., Sivaswamy, J., Karan, K., & Krishnadas, S. R. (2010). Optic disk and cup boundary detection using regional information. In 2010 IEEE international symposium on biomedical imaging: from nano to macro (pp. 948–951). IEEE.

  24. Madhusudhan, M., Malay, N., Nirmala, S. R., & Samerendra, D. (2011). Image processing techniques for glaucoma detection. In International conference on advances in computing and communications (pp. 365–373). Berlin, Heidelberg: Springer.

  25. Khalid, N. E. A., Noor, N. M., & Ariff, N. M. (2014). Fuzzy c-means (FCM) for optic cup and disc segmentation with morphological operation. Procedia Computer Science, 42, 255–262.

    Article  Google Scholar 

  26. Martinez-Perez, M. E., Witt, N., Parker, K. H., Hughes, A. D., & Thom, S. A. (2019). Automatic optic disc detection in colour fundus images by means of multispectral analysis and information content. PeerJ, 27(7), e7119.

    Article  Google Scholar 

  27. Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing.

  28. Boyle, R. D., & Thomas, R. C. (1988). Computer vision: A first course. Oxford: Blackwell Scientific Publications Ltd.

    Google Scholar 

  29. Banterle, F., Corsini, M., Cignoni, P., & Scopigno, R. (2012). A low‐memory, straightforward and fast bilateral filter through subsampling in spatial domain. In Computer Graphics Forum (Vol. 31, No. 1, pp. 19-32). Oxford, UK: Blackwell Publishing Ltd.

  30. Chrástek, R., Wolf, M., Donath, K., Niemann, H., Paulus, D., Hothorn, T., et al. (2005). Automated segmentation of the optic nerve head for diagnosis of glaucoma. Medical Image Analysis, 9(4), 297–314.

    Article  Google Scholar 

  31. Cheng, J., Liu, J., Wong, D. W. K., Yin, F., Cheung, C., Baskaran, M., Aung, T., & Wong, T. Y. (2011). Automatic optic disc segmentation with peripapillary atrophy elimination. In 2011 annual international conference of the IEEE engineering in medicine and biology society, EMBC (pp. 6224–6227). IEEE.

  32. Singh, R. U., & Gujral, S. (2014). Assessment of disc damage likelihood scale (DDLS) for automated glaucoma diagnosis. Procedia Computer Science, 36, 490–497.

    Article  Google Scholar 

  33. Murugan, R., Korah, R., & Kavitha, T. (2015). Computer aided screening of optic disc in retinal images using binary orientation map. Biomedical and Pharmacology Journal, 8(1), 419–426.

    Article  Google Scholar 

  34. Mittapalli, P. S., & Kande, G. B. (2016). Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomedical Signal Processing and Control, 24, 34–46.

    Article  Google Scholar 

  35. Kang, G. (1977). Digital image processing. Quest, 1, 2–20.

    Google Scholar 

  36. Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., et al. (1987). Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39(3), 355–368.

    Article  Google Scholar 

  37. Youssif, A. A., Ghalwash, A. Z., & Ghoneim, A. S. (2006). Comparative study of contrast enhancement and illumination equalization methods for retinal vasculature segmentation. In Proc. cairo international biomedical engineering conference.

  38. Salem, N. M., & Nandi, A. K. (2007). Novel and adaptive contribution of the red channel in pre-processing of colour fundus images. Journal of the Franklin Institute, 344(3–4), 243–256.

    Article  MATH  Google Scholar 

  39. Xu, Y., Lin, S., Wong, D. W. K., Liu, J., & Xu, D. (2013). Efficient reconstruction-based optic cup localization for glaucoma screening. In International conference on medical image computing and computer-assisted intervention (pp. 445–452). Berlin, Heidelberg: Springer.

  40. Dutta, M. K., Mourya, A. K., Singh, A., Parthasarathi, M., Burget, R., & Riha, K. (2014). Glaucoma detection by segmenting the super pixels from fundus colour retinal images. In 2014 international conference on medical imaging, m-health and emerging communication systems (MedCom) (pp. 86–90). IEEE.

  41. Mohamed, N. A., Zulkifley, M. A., & Hussain, A. (2015). On analyzing various density functions of local binary patterns for optic disc segmentation. In Computer Applications & Industrial Electronics (ISCAIE), 2015 IEEE Symposium on (pp. 37-41). IEEE.

  42. Lohmann, A. W. (1977). Suggestions for hybrid image processing. Optics Communications, 22(2), 165–168.

    Article  Google Scholar 

  43. Pruthi, J., & Mukherjee, S. (2013). Computer based early diagnosis of glaucoma in biomedical data using image processing and automated early nerve fiber layer defects detection using feature extraction in retinal colored stereo fundus images. International Journal of Scientific and Engineering Research, 4(4), 1822–1828.

    Google Scholar 

  44. Kankanala, M., & Kubakaddi, S. (2014). Automatic segmentation of optic disc using modified multi-level thresholding. In 2014 IEEE international symposium on signal processing and information technology (ISSPIT) (pp. 000125–000130). IEEE.

  45. Vaidya, Y. M., & Doiphode, S. E. (2014). Comparison of pre-processing methods for segmentation and approximation of optic disc boundary from processed digital retinal images. In 2014 international conference on devices, circuits and communications (ICDCCom) (pp. 1–6). IEEE.

  46. Mary, M. C. V. S., Rajsingh, E. B., Jacob, J. K. K., Anandhi, D., Amato, U., & Selvan, S. E. (2015). An empirical study on optic disc segmentation using an active contour model. Biomedical Signal Processing and Control, 18, 19–29.

    Article  Google Scholar 

  47. Dashtbozorg, B., Mendonça, A. M., & Campilho, A. (2015). Optic disc segmentation using the sliding band filter. Computers in Biology and Medicine, 56, 1–12.

    Article  Google Scholar 

  48. Sherwani, S. M., Tiwana, M. I., Iqbal, J., & Lovell, N. H. (2015). Automated segmentation of optic disc boundary and diameter calculation using fundus imagery. In Proceedings of the 2015 seventh international conference on computational intelligence, modelling and simulation (pp. 92–96). IEEE Computer Society.

  49. Ren, F., Li, W., Yang, J., Geng, H., & Zhao, D. (2016). Automatic optic disc localization and segmentation in retinal images by a line operator and level sets. Technology and Health Care, 24(s2), S767–S776.

    Article  Google Scholar 

  50. Ayub, J., Ahmad, J., Muhammad, J., Aziz, L., Ayub, S., Akram, U., & Basit, I. (2016). Glaucoma detection through optic disc and cup segmentation using K-mean clustering. In 2016 international conference on computing, electronic and electrical engineering (ICE Cube) (pp. 143–147). IEEE.

  51. Bharkad, S. (2017). Automatic segmentation of optic disk in retinal images. Biomedical Signal Processing and Control, 31, 483–498.

    Article  Google Scholar 

  52. Zilly, J., Buhmann, J. M., & Mahapatra, D. (2017). Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Computerized Medical Imaging and Graphics, 55, 28–41.

    Article  Google Scholar 

  53. Soltani, A., Battikh, T., Jabri, I., & Lakhoua, N. (2018). A new expert system based on fuzzy logic and image processing algorithms for early glaucoma diagnosis. Biomedical Signal Processing and Control, 40, 366–377.

    Article  Google Scholar 

  54. Elbalaoui, A., Ouadid, Y., Fakir, M. (2018). Segmentation of optic disc from fundus images. In 2018 international conference on computing sciences and engineering (ICCSE) 2018 (pp. 1–7). IEEE.

  55. Jiang, Y., Xia, H., Xu, Y., Cheng, J., Fu, H., Duan, L., Meng, Z., & Liu, J. (2018). Optic disc and cup segmentation with blood vessel removal from fundus images for glaucoma detection. In 2018 40th annual international conference of the ieee engineering in medicine and biology society (EMBC) 2018 (pp. 862–865). IEEE.

  56. Sivaswamy, J., Krishnadas, S. R., Joshi, G. D., Jain, M., & Tabish, A. U. (2014). Drishti-gs: Retinal image dataset for optic nerve head (onh) segmentation. In 2014 IEEE 11th international symposium on biomedical imaging (ISBI) 2014 (pp. 53–56). IEEE.

  57. Fumero, F., Alayón, S., Sanchez, J. L., Sigut, J., & Gonzalez-Hernandez, M. (2011). RIM-ONE: An open retinal image database for optic nerve evaluation. In 2011 24th international symposium on computer-based medical systems (CBMS) 2011 (pp. 1–6). IEEE.

  58. Lehmann, E. L., & Casella, G. (2006). Theory of point estimation. Berlin: Springer.

    MATH  Google Scholar 

  59. Huynh-Thu, Q., & Ghanbari, M. (2008). Scope of validity of PSNR in image/video quality assessment. Electronics Letters, 44(13), 800–801.

    Article  Google Scholar 

  60. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  61. Ferdous, R. (2009). An efficient k-means algorithm integrated with Jaccard distance measure for document clustering. In 2009 first Asian Himalayas international conference on internet 2009 (pp. 1–6). IEEE.

  62. Jackson, D. A., Somers, K. M., & Harvey, H. H. (1989). Similarity coefficients: measures of co-occurrence and association or simply measures of occurrence. The American Naturalist, 133(3), 436–453.

    Article  Google Scholar 

  63. Thakur, N., & Juneja, M. (2017). Clustering based approach for segmentation of optic cup and optic disc for detection of glaucoma. Current Medical Imaging Reviews, 13(1), 99–105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Juneja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakur, N., Juneja, M. Pre-processing of Retinal Images for Removal of Outliers. Wireless Pers Commun 116, 739–765 (2021). https://doi.org/10.1007/s11277-020-07736-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07736-x

Keywords

Navigation