[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Phase Sensing Technology Based Optical Signal Regeneration for 40 Gb/s Optical System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, phase sensing technology based optical signal regeneration system is designed and developed for 40 Gb/s optical system. The designed technique has achieved the low bit error rate (BER) and high Q-factor for the long haul optical system of 200 km. In comparison to the existing systems, the proposed technique have achieved the low BER and high Q-factor for long noisy fiber link. In this work, the HNLF configuration based that varies the phase sensing during the optical signal regeneration for high-speed 40 Gb/s degraded optical system is developed. The designed phase sensing based optical signal regeneration system has achieved the BER of 10−21 with high Q-factor. The designed system can be used in the existing regeneration system to provide the noiseless communication for long haul optical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Abualsaud, K., Elfouly, T. M., Khattab, T., Yaacoub, E., Ismail, L. S., Ahmed, M. H., et al. (2019). A survey on mobile crowd-sensing and its applications in the IoT era. IEEE Access, 7, 3855–3881.

    Article  Google Scholar 

  2. Ghoniemy, S. (2018). Enhanced time and wavelength division multiplexed passive optical network (TWDM-PON) for triple-play broadband service delivery in FTTx networks. In 2018 International Conference on Computer and Applications (ICCA) (pp. 419–426). IEEE.

  3. Li, M. J., & Hayashi, T. (2020). Advances in low-loss, large-area, and multicore fibers. In Optical Fiber Telecommunications VII (pp. 3–50). Academic Press.

  4. Thakur, A., Nagpal, S., & Gupta, A. (2018). Kerr effect based spectrum sliced wavelength division multiplexing for free space optical communication. Optik, 157, 31–37.

    Article  Google Scholar 

  5. Asobe, M., Umeki, T., & Tadanaga, O. (2018). Phase sensitive amplifier using periodically poled LiNbO3 Waveguides and their applications. IEICE Transactions on Electronics, 101(7), 586–593.

    Article  Google Scholar 

  6. Sang, X., Chu, P. L., & Yu, C. (2005). Applications of nonlinear effects in highly nonlinear photonic crystal fiber to optical communications. Optical and Quantum Electronics, 37(10), 965–994.

    Article  Google Scholar 

  7. Brown, T., & Sibbett, W. (2019). Femtosecond sources based on vibronic crystals. Ultrafast Photonics, 21.

  8. Christiansen, P. L., Sorensen, M. P., & Scott, A. C. (Eds.). (2000). Nonlinear fiber optics. In Nonlinear science at the dawn of the 21st century (Vol. 542, pp. 195–211). Berlin: Springer.

    Chapter  Google Scholar 

  9. Leuthold, J., Koos, C., & Freude, W. (2010). Nonlinear silicon photonics. Nature Photonics, 4(8), 535.

    Article  Google Scholar 

  10. Biswas, A., & Konar, S. (2006). Introduction to non-Kerr law optical solitons. Cambridge: Chapman and Hall.

    Book  Google Scholar 

  11. Marhic, M. E., Andrekson, P. A., Petropoulos, P., Radic, S., Peucheret, C., & Jazayerifar, M. (2015). Fiber optical parametric amplifiers in optical communication systems. Laser & Photonics Reviews, 9(1), 50–74.

    Article  Google Scholar 

  12. Pu, M., Hu, H., Ottaviano, L., Semenova, E., Vukovic, D., Oxenløwe, L. K., et al. (2018). Ultra-efficient and broadband nonlinear AlGaAs-on-insulator chip for low-power optical signal processing. Laser & Photonics Reviews, 12(12), 1800111.

    Article  Google Scholar 

  13. Das, B., Abdullah, M. F. L., Pandey, B., & Hussain, D. M. A. (2019). Design and implementation of optical signal reinstatement technique for high DPSK RZ transceiver scheme. Wireless Personal Communications, 106(4), 1767–1786.

    Article  Google Scholar 

  14. Das, B., Abdullah, M. F. L., Pandey, B., Hussain, D. M. A., & Chowdhry, B. S. (2017). A novel noise free transmission technique for designing 100 Gb/s future generation optical communication system. International Journal of Future Generation Communication and Networking, 10(2), 33–40.

    Article  Google Scholar 

  15. Venkatesh, S., & Schurig, D. (2019). Transformation optics design of a planar near field magnifier for sub-diffraction imaging. Optics Express, 27(4), 4694–4713.

    Article  Google Scholar 

  16. Das, B., Abdullah, M. F. L., & Shah, N. S. M. (2016). All optical signal restoration for 10G DPSK system. In Advanced computer and communication engineering technology (pp. 545–556). Cham: Springer.

  17. Das, B., Abdullah, M. F. L., Shah, N. S. M., Ahmed, L. M. A., & Pandey, B. (2017). Development of new all-optical signal regeneration technique. Wireless Personal Communications, 95(2), 523–537.

    Article  Google Scholar 

  18. Das, B., Abdullah, M. F. L., & Shah, N. S. M. (2016). Development and testing of a novel all-optical signal regeneration technique. In 2016 IEEE 6th international conference on photonics (ICP) (pp. 1–3). IEEE.

  19. Iyer, S., & Singh, S. P. (2017). Spectral and power efficiency investigation in single-and multi-line-rate optical wavelength division multiplexed (WDM) networks. Photonic Network Communications, 33(1), 39–51.

    Article  Google Scholar 

  20. Saliou, F., Chanclou, P., Laurent, F., Genay, N., Lazaro, J. A., Bonada, F., et al. (2009). Reach extension strategies for passive optical networks. Journal of Optical Communications and Networking, 1(4), C51–C60.

    Article  Google Scholar 

  21. Cvecek, K., Sponsel, K., Stephan, C., Onishchukov, G., Ludwig, R., Schubert, C., et al. (2008). Phase-preserving amplitude regeneration for a WDM RZ-DPSK signal using a nonlinear amplifying loop mirror. Optics Express, 16(3), 1923–1928.

    Article  Google Scholar 

  22. Yaacob, S. S. M., Shah, N. S. M., Shamsuddin, N. N., & Das, B. (2015). 10 Gb/s NRZ based on self-phase modulation in all optical 2R regeneration. ARPN Journal of Engineering and Applied Sciences, 10(19).

  23. Wen, F., Sygletos, S., Tsekrekos, C. P., Zhou, X., Geng, Y., Wu, B., Qiu, K. & Turitsyn, S. K. (2017). Multilevel power transfer function characterization of nonlinear optical loop mirror. In 2017 19th international conference on transparent optical networks (ICTON) (pp. 1–4). IEEE.

  24. Al-Khateeb, M. A., McCarthy, M. E., Sánchez, C., & Ellis, A. D. (2018). Nonlinearity compensation using optical phase conjugation deployed in discretely amplified transmission systems. Optics Express, 26(18), 23945–23959.

    Article  Google Scholar 

  25. Wright, L. G., Ziegler, Z. M., Lushnikov, P. M., Zhu, Z., Eftekhar, M. A., Christodoulides, D. N., et al. (2018). Multimode nonlinear fiber optics: Massively parallel numerical solver, tutorial, and outlook. IEEE Journal of Selected Topics in Quantum Electronics, 24(3), 1–16.

    Article  Google Scholar 

  26. Farooq, E., Gupta, S. K., & Sahu, A. (2017). BER analysis of OOK and DPSK schemes in gamma-gamma turbulence channel with PIN and APD photodetector. In 2017 8th international conference on computing, communication and networking technologies (ICCCNT) (pp. 1–4). IEEE.

  27. Agrawal, G. P. (2016). Ultrashort pulse propagation in nonlinear dispersive fibers. In The Supercontinuum laser source (pp. 101–133). Springer, New York, NY.

  28. Willner, A. E., Khaleghi, S., Chitgarha, M. R., & Yilmaz, O. F. (2014). All-optical signal processing. Journal of Lightwave Technology, 32(4), 660–680.

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Departement of Electornic Engineering, Department of Electronic Engineering, Quaid-E-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan and Faculty of Electrical and Electronic Engineering, Universiti Tun Huseein Onn Malaysia, for their support and encouragement to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagwan Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Khan, M.S.A., Shaikh, M.M. et al. Phase Sensing Technology Based Optical Signal Regeneration for 40 Gb/s Optical System. Wireless Pers Commun 116, 1195–1215 (2021). https://doi.org/10.1007/s11277-020-07214-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07214-4

Keywords

Navigation