[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Energy Efficient Dynamic Cluster Head and Routing Path Selection Strategy for WBANs

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wirelss Body Area Networks, a new promising technology, have the competence to reform healthcare and contribute ubiquitous health monitoring services to patients both at homes and hospitals. WBAN comprises of low power sensor nodes that communicate based on radio frequency communicational technologies. Sensor nodes are either wearable or implantable (beneath the skin). However, it is difficult to recharge or replace the devices that are used to sense the body parameters. Thus, energy consumption and prolonged lifetime of the networks is a major concern and more energy efficient routing protocols for WBANs are required. We have proposed a routing protocol based on GA for WBANs which is efficient in terms of energy efficiency and network lifetime. Cost function is defined on the basis of residual energy and distance parameter so that the near by nodes are selected in a cluster which makes ideal cluster distribution and reduces energy consumption. The proposed algorithm focuses on Inter-BAN communication. The simulation results of the proposed protocol are compared with previously known schemes in terms of different parameters, such as energy efficiency, network lifetime, throughput, packet delivery ratio and average delay and have shown the enhanced performance. Also, the proposed scheme has enhanced energy optimization by 28–29% with respect to the existing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. World Health Statistics. (2018). http://apps.who.int/iris/bitstream/handle/10665/272596/9789241565585-eng.pdf. Retrieved December 14, 2018.

  2. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., & Jamalipour, A. (2014). Wireless body area networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1658–1686.

    Article  Google Scholar 

  3. Latré, B., Braem, B., Moerman, I., Blondia, C., & Demeester, P. (2011). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18.

    Article  Google Scholar 

  4. Punj, R., & Kumar, R. (2019). Technological aspects of WBANs for health monitoring: A comprehensive review. Wireless Networks, 25(3), 1125–1157.

    Article  Google Scholar 

  5. Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., et al. (2012). A comprehensive survey of wireless body area networks. Journal of Medical Systems, 36(3), 1065–1094.

    Article  Google Scholar 

  6. Touati, F., & Tabish, R. (2013). U-healthcare system: State-of-the-art review and challenges. Journal of Medical Systems, 37(3), 9949.

    Article  Google Scholar 

  7. Iot Medical Devices Market. https://www.marketsandmarkets.com/PressReleases/iot-medical-device.asp. Retrieved November 24, 2018.

  8. Movassaghi, S., Abolhasan, M., & Lipman, J. (2013). A review of routing protocols in wireless body area networks. Journal of Networks, 8(3), 559–575.

    Article  Google Scholar 

  9. Effatparvar, M., Dehghan, M., & Rahmani, A. M. (2016). A comprehensive survey of energy-aware routing protocols in wireless body area sensor networks. Journal of Medical Systems, 40(9), 201–228.

    Article  Google Scholar 

  10. Watteyne, T., Augé-Blum, I., Dohler, M., & Barthel, D. (2007). Anybody: A self-organization protocol for body area networks. In Proceedings of the ICST 2nd international conference on body area networks (pp. 1–6).

  11. Culpepper, J., Dung, L., & Moh, M. (2003). Hybrid indirect transmissions (HIT) for data gathering in wireless micro sensor networks with biomedical applications. In Proceedings of 18th IEEE annual workshop on computer communications (CCW 2003) (pp. 124–133).

  12. Culpepper, B. J., Dung, L., & Moh, M. (2004). Design and analysis of hybrid indirect transmissions (HIT) for data gathering in wireless micro sensor networks. ACM SIGMOBILE Mobile Computing and Communications Review, 8(1), 61–83.

    Article  Google Scholar 

  13. Chang, J.-Y., & Ju, P.-H. (2014). An energy-saving routing architecture with a uniform clustering algorithm for wireless body sensor networks. Future Generation Computer Systems, 35, 128–140.

    Article  MathSciNet  Google Scholar 

  14. Kaur, N., & Singh, S. (2017). Optimized cost effective and energy efficient routing protocol for wireless body area networks. Ad Hoc Networks, 61, 65–84.

    Article  Google Scholar 

  15. Navya, V., & Deepalakshmi, P. (2018). Energy efficient routing for critical physiological parameters in wireless body area networks under mobile emergency scenarios. Computers & Electrical Engineering, 72, 512–525.

    Article  Google Scholar 

  16. Van Daele, P., Moerman, I., & Demeester, P. (2014). Wireless body area networks: Status and opportunities. In Proceedings of XXXIth IEEE general assembly and scientific symposium (URSI GASS) (pp. 1–4).

  17. Hanson, M. A., Powell, H. C, Jr., Barth, A. T., Ringgenberg, K., Calhoun, B. H., Aylor, J. H., et al. (2009). Body area sensor networks: Challenges and opportunities. Computer, 42(1), 58.

    Article  Google Scholar 

  18. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., & Leung, V. C. (2011). Body area networks: A survey. Mobile Networks and Applications, 16(2), 171–193.

    Article  Google Scholar 

  19. Zhang, Y., Sun, L., Song, H., & Cao, X. (2014). Ubiquitous WSN for healthcare: Recent advances and future prospects. IEEE Internet of Things Journal, 1(4), 311–318.

    Article  Google Scholar 

  20. Abidi, B., Jilbab, A., & Haziti, M. E. (2017) Wireless sensor networks in biomedical: Wireless body area networks. In Europe and MENA cooperation advances in information and communication technologies (pp. 321–329). Cham: Springer.

  21. Cavallari, R., Martelli, F., Rosini, R., Buratti, C., & Verdone, R. (2014). A survey on wireless body area networks: Technologies and design challenges. IEEE Communications Surveys & Tutorials, 16(3), 1635–1657.

    Article  Google Scholar 

  22. Tobón, D. P., Falk, T. H., & Maier, M. (2013). Context awareness in WBANs: A survey on medical and non-medical applications. IEEE Wireless Communications, 20(4), 30–37.

    Article  Google Scholar 

  23. Castillejo, P., Martinez, J.-F., Rodriguez-Molina, J., & Cuerva, A. (2013). Integration of wearable devices in a wireless sensor network for an e-health application. IEEE Wireless Communications, 20(4), 38–49.

    Article  Google Scholar 

  24. Cao, H., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: A survey and outlook. IEEE Communications Magazine, 47(12), 84–93.

    Article  Google Scholar 

  25. Ortiz, A. M., Ababneh, N. Timmons, N. & Morrison, J. (2012). Adaptive routing for multihop IEEE 802.15. 6 wireless body area networks. In Proceedings of 20th international conference on software, telecommunications and computer networks (SoftCOM) (pp. 1–5).

  26. Afsana, F., Jahan, N., & Kaiser, M. (2015). An energy efficient cluster based forwarding scheme for body area network using nano-scale electromagnetic communication. In Proceedings of IEEE international WIE conference on electrical and computer engineering (WIECON-ECE) (pp. 491–494).

  27. Singh, K., & Singh, R. K. (2015). An energy efficient fuzzy based adaptive routing protocol for wireless body area network. In Proceedings of IEEE UP section conference on electrical computer and electronics (UPCON) (pp. 1–6).

  28. Liang, L., Ge, Y., Feng, G., Ni, W., & Wai, A. A. P. (2014). A low overhead tree-based energy-efficient routing scheme for multi-hop wireless body area networks. Computer Networks, 70, 45–58.

    Article  Google Scholar 

  29. ul Huque, M. T. I., Munasinghe, K. S., Abolhasan, M., & Jamalipour, A. (2013). Sea-ban: Semi-autonomous adaptive routing in wireless body area networks. In Proceedings of 7th international conference on signal processing and communication systems (ICSPCS) (pp. 1–7).

  30. Rajagopalan, R. (2016). Energy efficient routing algorithm for patient monitoring in body sensor networks. In Proceedings of IEEE 13th international conference on wearable and implantable body sensor networks (BSN) (pp. 141–146).

  31. Li, C., Zhang, Z., Xiong, F. & Liu, Q. (2015). An efficient and stable route protocol in wearable body networks. In Proceedings of first international conference on computational intelligence theory, systems and applications (CCITSA) (pp. 104–109).

  32. Khan, R. A., Mohammadani, K. H., Soomro, A. A., Hussain, J., Khan, S., Arain, T. H., et al. (2018). An energy efficient routing protocol for wireless body area sensor networks. Wireless Personal Communications, 99(4), 1443–1454.

    Article  Google Scholar 

  33. Liao, Y., Han, Y., Yu, Q., Ai, Q., Liu, Q., & Leeson, M. S. (2018). Wireless body area network mobility-aware task offloading scheme. IEEE Access, 6, 61366–61376.

    Article  Google Scholar 

  34. Mu, J., Stewart, R., Han, L., & Crawford, D. (2018). A self-organized dynamic clustering method and its multiple access mechanism for multiple WBANs. IEEE Internet of Things Journal, 6(4), 6042–6051.

    Article  Google Scholar 

  35. Isabel, R., & Baburaj, E. (2018). An optimal trust aware cluster based routing protocol using fuzzy based trust inference model and improved evolutionary particle swarm optimization in WBANs. Wireless Personal Communications, 101(1), 201–222.

    Article  Google Scholar 

  36. Anguraj, D. K., & Smys, S. (2018). Trust-based intrusion detection and clustering approach for wireless body area networks. Wireless Personal Communications, 104, 1–20.

    Article  Google Scholar 

  37. Bhardwaj, T., & Sharma, S. C. (2018). Cloud-WBAN: An experimental framework for cloud-enabled wireless body area network with efficient virtual resource utilization. Sustainable Computing: Informatics and Systems, 20, 14–33.

    Google Scholar 

  38. Chatterjee, M., Das, S. K., & Turgut, D. (2002). WCA: A weighted clustering algorithm for mobile Ad Hoc networks. Cluster Computing, 5(2), 193–204.

    Article  Google Scholar 

  39. Punj, R., & Kumar, R. (2018). CHS-GA: An approach for cluster head selection using genetic algorithm for WBANs. In M. Auer & D. Zutin (Eds.), Online Engineering & Internet of Things. Lecture Notes in Networks and Systems (Vol 22, pp. 28–35). Cham: Springer.

    Chapter  Google Scholar 

  40. Goldberg, D. E. (1989). Genetic algorithms in search, optimization & machine learning, 8th edn. London: Pearson Education.

  41. Halgamuge, M. N., Zukerman, M., Ramamohanarao, K., & Vu, H. L. (2009). An estimation of sensor energy consumption. Progress in Electromagnetics Research, 12, 259–295.

    Article  Google Scholar 

  42. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd IEEE annual Hawaii international conference on system sciences (pp. 1–10).

  43. Datta, N. (2014). Study and design of energy efficient block cipher for wireless body area networks (WBANs).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roopali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roopali, Kumar, R. Energy Efficient Dynamic Cluster Head and Routing Path Selection Strategy for WBANs. Wireless Pers Commun 113, 33–58 (2020). https://doi.org/10.1007/s11277-020-07177-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07177-6

Keywords

Navigation