[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

An Expert Approach for Data Flow Prediction: Case Study of Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The data flow is an important parameter used in the optimization problem of Wireless Sensor Networks. This paper presents an expert approach for improved data flow prediction based on data discretization and artificial intelligence. The proposed approach has been implemented on various machine learning methods (a total of 17 methods). This data flow prediction is based on the dataset generated from the simulations with NS-2.35 for multiple Wireless Sensor Networks (5- to -50 nodes). The performance comparison of different machine learning models with continuous data and discretized data is also presented. The proposed approach considerably reduces the execution time of the machine learning models for training purposes and also enhances the accuracy of prediction. The result analysis shows that the proposed approach is better compared to various machine learning methods. Also, the proposed approach is able to handle both continuous and discrete data. The datasets used in this work are available as a supplement at NDS and DDS link.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Berka, P., & Bruha, I. (1998). Discretization and grouping: Preprocessing steps for data mining. In European symposium on principles of data mining and knowledge discovery (pp. 239–245). Berlin: Springer

  2. Shah, S. B., Chen, Z., Yin, F., Khan, I. U., & Niqash, A. (2018). Energy and interoperable aware routing for throughput optimization in clustered iot-wireless sensor networks. Future Generation Computer Systems, 81, 372–381.

    Article  Google Scholar 

  3. Bhushan, B., & Sahoo, G. (2018). Recent advances in attacks, technical challenges, vulnerabilities and their countermeasures in wireless sensor networks. Wireless Personal Communications, 98(2), 2037–2077.

    Article  Google Scholar 

  4. Issariyakul, T., & Hossain, E. (2011). Introduction to network simulator NS2. Berlin: Springer.

    Google Scholar 

  5. Swain, R. R., & Khilar, P. M. (2017). Composite fault diagnosis in wireless sensor networks using neural networks. Wireless Personal Communications, 95(3), 2507–2548.

    Article  Google Scholar 

  6. Elghazel, W., Bahi, J., Guyeux, C., Hakem, M., Medjaher, K., & Zerhouni, N. (2015). Dependability of wireless sensor networks for industrial prognostics and health management. Computers in Industry, 68, 1–15.

    Article  Google Scholar 

  7. Sriwanna, K., Boongoen, T., & Iam-On, N. (2017). Graph clustering-based discretization of splitting and merging methods (graphs and graphm). Human-Centric Computing and Information Sciences, 7(1), 21.

    Article  Google Scholar 

  8. Panda, M. (2017). Intelligent data analysis for sustainable smart grids using hybrid classification by genetic algorithm based discretization. Intelligent Decision Technologies, 11(2), 137–151.

    Article  Google Scholar 

  9. Gallo, C. A., Cecchini, R. L., Carballido, J. A., Micheletto, S., & Ponzoni, I. (2016). Discretization of gene expression data revised. Briefings in Bioinformatics, 17(5), 758–770.

    Article  Google Scholar 

  10. Santoni, D., Weitschek, E., & Felici, G. (2016). Optimal discretization and selection of features by association rates of joint distributions. RAIRO-Operations Research, 50(2), 437–449.

    Article  MathSciNet  MATH  Google Scholar 

  11. Gómez, I., Ribelles, N., Franco, L., Alba, E., & Jerez, J. M. (2016). Supervised discretization can discover risk groups in cancer survival analysis. Computer Methods and Programs in Biomedicine, 136, 11–19.

    Article  Google Scholar 

  12. Sarkar, S., & Srivastav, A. (2016). A composite discretization scheme for symbolic identification of complex systems. Signal Processing, 125, 156–170.

    Article  Google Scholar 

  13. Moharir, S., Sanghavi, S., & Shakkottai, S. (2015). Online load balancing under graph constraints. IEEE/ACM Transactions on Networking, 24(3), 1690–1703.

    Article  Google Scholar 

  14. García-Gil, D., Ramírez-Gallego, S., García, S., & Herrera, F. (2018). Principal components analysis random discretization ensemble for big data. Knowledge-Based Systems, 150, 166–174.

    Article  Google Scholar 

  15. Lopes, L. A., Machado, V. P., Rabêlo, R. A. L., Fernandes, R. A. S., & Lima, B. V. A. (2016). Automatic labelling of clusters of discrete and continuous data with supervised machine learning. Knowledge-Based Systems, 106, 231–241.

    Article  Google Scholar 

  16. Arnaiz-González, Á., Díez-Pastor, J. F., Rodríguez, J. J., & García-Osorio, C. I. (2016). Instance selection for regression by discretization. Expert Systems with Applications, 54, 340–350.

    Article  Google Scholar 

  17. de Sá, C. R., Soares, C., & Knobbe, A. (2016). Entropy-based discretization methods for ranking data. Information Sciences, 329, 921–936.

    Article  Google Scholar 

  18. Bruni, R., & Bianchi, G. (2015). Effective classification using a small training set based on discretization and statistical analysis. IEEE Transactions on Knowledge and Data Engineering, 27(9), 2349–2361.

    Article  Google Scholar 

  19. Jung, S., Bi, Y., & Davuluri, R. V. (2015). Evaluation of data discretization methods to derive platform independent isoform expression signatures for multi-class tumor subtyping. BMC Genomics, 16(11), S3.

    Article  Google Scholar 

  20. Jankowski, C., Reda, D., Mańkowski, M., & Borowik, G. (2015). Discretization of data using boolean transformations and information theory based evaluation criteria. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(4), 923–932.

    Article  Google Scholar 

  21. Ferreira, A. J., & Figueiredo, M. A. T. (2014). Incremental filter and wrapper approaches for feature discretization. Neurocomputing, 123, 60–74.

    Article  Google Scholar 

  22. Sang, Y., Qi, H., Li, K., Jin, Y., Yan, D., & Gao, S. (2014). An effective discretization method for disposing high-dimensional data. Information Sciences, 270, 73–91.

    Article  MathSciNet  MATH  Google Scholar 

  23. Cangelosi, D., Muselli, M., Parodi, S., Blengio, F., Becherini, P., Versteeg, R., et al. (2014). Use of attribute driven incremental discretization and logic learning machine to build a prognostic classifier for neuroblastoma patients. BMC Bioinformatics, 15(5), S4.

    Article  Google Scholar 

  24. Lustgarten, J. L., Gopalakrishnan, V., Grover, H., & Visweswaran, S. (2008). Improving classification performance with discretization on biomedical datasets. In AMIA annual symposium proceedings (vol. 2008, p. 445). American Medical Informatics Association

  25. Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1), 245–271.

    Article  MathSciNet  MATH  Google Scholar 

  26. Chmielewski, M. R., & Grzymala-Busse, J. W. (1996). Global discretization of continuous attributes as preprocessing for machine learning. International Journal of Approximate Reasoning, 15(4), 319–331.

    Article  MATH  Google Scholar 

  27. Salleb-Aouissi, A., Vrain, C., Nortet, C., Kong, X., Rathod, V., & Cassard, D. (2013). Quantminer for mining quantitative association rules. Journal of Machine Learning Research, 14(1), 3153–3157.

    MATH  Google Scholar 

  28. Murphy, K. P. (2012). Machine learning: A probabilistic perspective. Cambridge: MIT Press.

    MATH  Google Scholar 

  29. Kulakov, A., Davcev, D., & Trajkovski, G. (2005). Implementing artificial neural-networks in wireless sensor networks. In IEEE/Sarnoff symposium on advances in wired and wireless communication (pp. 94–97). IEEE.

  30. Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.

    Google Scholar 

  31. Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In IEEE international conference on artificial neural networks (pp. 586–591).

  32. Faraway, J. J. (2016). Extending the linear model with R: Generalized linear, mixed effects and nonparametric regression models (Vol. 124). Boca Raton: CRC Press.

    Book  MATH  Google Scholar 

  33. Narayanan, S. J., Bhatt, R. B., & Perumal, B. (2016). Improving the accuracy of fuzzy decision tree by direct back propagation with adaptive learning rate and momentum factor for user localization. Procedia Computer Science, 89, 506–513.

    Article  Google Scholar 

  34. Heckerman, D., Chickering, D. M., Meek, C., Rounthwaite, R., & Kadie, C. (2000). Dependency networks for inference, collaborative filtering, and data visualization. Journal of Machine Learning Research, 1(Oct), 49–75.

    MATH  Google Scholar 

  35. Rulequest: Data Mining with Cubist. (www.rulequest.com/cubist-info.html).

  36. Tang, J., Deng, C., & Huang, G.-B. (2016). Extreme learning machine for multilayer perceptron. IEEE Transactions on Neural Networks and Learning Systems, 27(4), 809–821.

    Article  MathSciNet  Google Scholar 

  37. Liu, D., & Fan, S. (2014). A modified decision tree algorithm based on genetic algorithm for mobile user classification problem. The Scientific World Journal, 2014(1), 1–11.

    Google Scholar 

  38. Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123–140.

    MATH  Google Scholar 

  39. Gan, T. Y., Kalinga, O., & Singh, P. (2009). Comparison of snow water equivalent retrieved from SSM/I passive microwave data using artificial neural network, projection pursuit and nonlinear regressions. Remote Sensing of Environment, 113(5), 919–927.

    Article  Google Scholar 

  40. Ticknor, J. L. (2013). A bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501–5506.

    Article  Google Scholar 

  41. Hothorn, T., & Zeileis, A. (2015). partykit: A modular toolkit for recursive partytioning in R. The Journal of Machine Learning Research, 16(1), 3905–3909.

    MathSciNet  MATH  Google Scholar 

  42. Jagannathan, R. (2016). A linear regression approach for determining explicit expressions for option prices for equity option pricing models with dependent volatility and return processes. Journal of Mathematical Finance, 6(02), 303.

    Article  Google Scholar 

  43. Cios, K. J., Pedrycz, W., & Swiniarski, R. W. (1998). Data mining and knowledge discovery. In Data mining methods for knowledge discovery (pp. 1–26). Boston: Springer.

    Chapter  MATH  Google Scholar 

  44. Mannor, S., & Meir, R. (2002). On the existence of linear weak learners and applications to boosting. Machine Learning, 48(1–3), 219–251.

    Article  MATH  Google Scholar 

  45. Baadache, A., & Belmehdi, A. (2012). Fighting against packet dropping misbehavior in multi-hop wireless ad hoc networks. Journal of Network and Computer Applications, 35(3), 1130–1139.

    Article  Google Scholar 

  46. Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials, 16(4), 1996–2018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasminder Kaur Sandhu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest. The article discusses about machine learning based discretization techniques for network analysis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

The correlation values for NDS and DDS is shown in Table 5 : 

Table 5 Correlation for NDS and DDS

The correlation for various dataset partitions is presented in Fig. 10:

Fig. 10
figure 10

Correlation

The Coefficient of Determination values for NDS and DDS is shown in Table 6 : 

Table 6 Coefficient of Determination for NDS and DDS

The coefficient of determination for various dataset partitions is presented in Fig. 11:

Fig. 11
figure 11

Coefficient of determination

The Root Mean Square Error (RMSE) values for NDS and DDS is shown in Table 7 : 

Table 7 Root Mean Square Error for NDS and DDS

The RMSE for various dataset partitions is presented in Fig. 12:

Fig. 12
figure 12

RMSE

The accuracy values for NDS and DDS is shown in Table 8 : 

Table 8 The accuracy for NDS and DDS

The accuracy for various dataset partitions is presented in Fig. 13:

Fig. 13
figure 13

Accuracy

The time taken for NDS and DDS is shown in Table 9 : 

Table 9 The time taken for NDS and DDS

The time taken for various dataset partitions is presented in Fig. 14:

Fig. 14
figure 14

Time taken

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sandhu, J.K., Verma, A.K. & Rana, P.S. An Expert Approach for Data Flow Prediction: Case Study of Wireless Sensor Networks. Wireless Pers Commun 112, 325–352 (2020). https://doi.org/10.1007/s11277-020-07028-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07028-4

Keywords