[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Hybrid Cloud Resource Provisioning (HCRP) Algorithm for Optimal Resource Allocation Using MKFCM and Bat Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The basic purpose of resource allocation is to make the most efficient allocation of available resources. It contains resources and the number of tasks. The proposed methodology has two types there are resource discovery and resource allocation. The Multiple Kernel Fuzzy C Means Clustering Algorithm (MKFCM) is utilized for resource discovery process. Depends on the MKFCM algorithm the recommended method is group the available resources. Thereafter the resources are allocated with the help of a hybrid optimization technique. Here, resource provisioning algorithm is hybrid with bat algorithm for hybridization approach. The experimental analysis of the proposed mechanism is evaluated based on cost value, memory utilization and time. The prospective strategies have been experimented using the Cloud simulator with Java as the working platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lu, D., & Ma, J. (2015). A universal fairness evaluation framework for resource allocation in cloud computing. China Communications,12(5), 113–122.

    Article  Google Scholar 

  2. Papagianni, C., & Leivadeas, A. (2013). On the optimal allocation of virtual resources in cloud computing networks. IEEE Transaction on Computers,62(6), 1060–1071.

    Article  MathSciNet  Google Scholar 

  3. Nan, G., & Mao, Z. (2014). Distributed resource allocation in cloud-based wireless multimedia social networks. IEEE Journal of Network,28(4), 74–80.

    Article  Google Scholar 

  4. Alasaad, A., & Shafiee, K. (2015). Innovative schemes for resource allocation in the cloud for media streaming applications. IEEE Journal of Parallel and Distributed System,26(4), 1021–1033.

    Article  Google Scholar 

  5. Sharkh, M. A., & Jammal, M. (2013). Resource allocation in a network-based cloud computing environment: Design challenges. IEEE Communications Magazine,51(11), 46–52.

    Article  Google Scholar 

  6. Di, S., & Wang, C.-L. (2013). Error-tolerant resource allocation and payment minimization for cloud system. IEEE Transactions on Parallel and Distributed Systems,24(6), 1097–1106.

    Article  Google Scholar 

  7. Di, S., & Wang, C.-L. (2013). Dynamic optimization of multi attribute resource allocation in self-organizing clouds. IEEE Transaction on Parallel and Distributed Systems,24(3), 464–478.

    Article  Google Scholar 

  8. Warneke, D., & Kao, O. (2011). Exploiting dynamic resource allocation for efficient parallel data processing in the cloud. IEEE Transactions on Parallel and Distributed Systems,22(6), 985–997.

    Article  Google Scholar 

  9. Helda Mercy, M., Anand, C., & Suganya, T. S. (2011). Resource overbooking: Using aggregation profiling in large scale resource discovery. International Journal of Engineering Trends and Technology, 52–54.

  10. Mashayekhy, L., & Nejad, M. M. (2015). A PTAS mechanism for provisioning and allocation of heterogeneous cloud resources. IEEE Transactions on Parallel and Distributed Systems,26(9), 1–14.

    Article  Google Scholar 

  11. Liang, H., & Cai, L. X. (2012). An SMDP-based service model for inter domain resource allocation in mobile cloud networks. IEEE Transactions on Vehicular Technology,61(5), 2222–2232.

    Article  Google Scholar 

  12. Morshedlou, H., & Meybodi, M. R. (2014). Decreasing impact of SLA violations: A proactive resource allocation approach for cloud computing environments. IEEE Transactions on Cloud Computing,2(2), 156–167.

    Article  Google Scholar 

  13. Xiao, Z., & Song, W. (2013). Dynamic resource allocation using virtual machines for cloud computing environment. IEEE Transaction on Parallel and Distributed (TPDS),24(6), 1107–1117.

    Article  Google Scholar 

  14. Di, S., & Kondo, D. (2015). Optimization of composite cloud service processing with virtual machines. IEEE Transactions on Computers,64(6), 1755–1768.

    MathSciNet  MATH  Google Scholar 

  15. Abrishami, S., & Naghibzadeh, M. (2012). Deadline-constrained workflow scheduling in software as a service cloud. Scientia Iranica,19(3), 680–689.

    Article  Google Scholar 

  16. Guo, L., Zhao, S., Shen, S., & Jiang, C. (2012). Task scheduling optimization in cloud computing based on heuristic algorithm. Journal of Networks,7(3), 547.

    Article  Google Scholar 

  17. Kumar, P., & Anand, S. (2013). An approach to optimize workflow scheduling for cloud computing environment. Journal of Theoretical and Applied Information Technology, 57(3).

  18. Zuo, X., Zhang, G., & Tan, W. (2014). Self-adaptive learning PSO-based deadline constrained task scheduling for hybrid IaaS cloud. IEEE Transactions on Automation Science and Engineering,11(2), 564–573.

    Article  Google Scholar 

  19. Agarwal, A., & Jain, S. (2014). Efficient optimal algorithm of task scheduling in cloud computing environment. International Journal of Computer Trends and Technology (IJCTT), 9(7).

  20. Patra, P. K., Singh, H., & Singh, G. (2013). Fault tolerance techniques and comparative implementation in cloud computing. International Journal of Computer Applications,64(14), 37–41.

    Article  Google Scholar 

  21. Wan, J., & Zou, C. (2013). Cloud-enabled wireless body area networks for pervasive healthcare. IEEE Journal of Network,27(5), 56–61.

    Article  Google Scholar 

  22. Mandal, U., & Habib, M. F. (2013). Greening the cloud using renewable-energy-aware service migration. IEEE Network,27(6), 36–43.

    Article  Google Scholar 

  23. Venu, N., & Anuradha, B. (2013). A novel multiple-kernel based fuzzy c-means algorithm with spatial information for medical image segmentation. International Journal of Image Processing (IJIP),7(3), 286.

    Google Scholar 

  24. Poobalan, A., & Selvi, V. (2013). Optimization of cost in cloud computing using OCRP algorithm. International Journal of Engineering Trends and Technology,4(5), 2105–2107.

    Google Scholar 

  25. Yang, X.-S. (2013). Bat algorithm: Literature review and applications. International Journal of Bio-Inspired Computation, 5(3).

  26. Saraswathi, A. T., Kalaashri, Y. R., & Padmavathi, S. (2015). Dynamic resource allocation scheme in cloud computing. Procedia Computer Science,47, 30–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalaiselvi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaiselvi, S., Kanimozhi Selvi, C.S. Hybrid Cloud Resource Provisioning (HCRP) Algorithm for Optimal Resource Allocation Using MKFCM and Bat Algorithm. Wireless Pers Commun 111, 1171–1185 (2020). https://doi.org/10.1007/s11277-019-06907-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06907-9

Keywords

Navigation