[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A New System Model for Sensor Node Validation by Using OPNET

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

WSN has been massively used in many fields as monitoring devices for several applications; these sensor-nodes can be expected to work hardly for few years without present any technical issues. The validation of sensor nodes is challenged task owning the natural of the environment, the health of this device, replacing or recharging the battery of this tiny device inaccessible place, and the distributions of a huge number of sensor-nodes. However, no validation study has been presented for sensor nodes by using OPNET simulation with ZigBee, with several sensor sets. In this paper, we are designing and implementing a validation model for WSNs to discover bad nodes in any distribution WSN. The result obtained from simulation show that while increasing the number of nodes, number of bad nodes will be increased on one target. However, increase number of targets decrease the number of bad nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu, Y., & Qian, K. (2016). A novel tree-based routing protocol in ZigBee wireless network. In Proceedings of the 8th IEEE international conference on communication software and networks pattern recognition (pp. 469–473).

  2. Nasser, A. M. T., & Pawar, V. P. (2014). Contemporary affirmation of machine learning models for sensor validation and recommendations for future research directions. Global Journal, 14(3), 18–24.

    Google Scholar 

  3. Nasser, A.M.T., & Pawar, V.P. (2015). Machine learning approach for sensors validation and clustering. In Proceedings of the 8th IEEE international conference on emerging research in electronics computer science and technology (ICERECT) (pp. 370–375).

  4. Bhumika., & Parmar, A.S. (2015). Performance evaluation of Zigbee 802.15.4 WPAN in the logic subnet in Opnet modeler. In Proceedings of the IEEE international conference on circuit, Pawer and computing technologies (ICCPCT) (pp. 1–6).

  5. Hammond, I.S., Stewart, B.G., Kocian, A., & McMeekin, S.G. (2009). A comprehensive performance study of open modeler for ZigBee wireless sensor networks. In Proceedings of the third IEEE international conference on next generation mobile applications (ICNGMA), services and technologies (vol. 2, no. 2, pp. 357–362).

  6. Kung, H.T., & Vlah, D. (2009). A spectral clustering approach to validating sensors via their peers in distributed sensor networks. In Proceedings of the 18th IEEE international conference on computer communications and networks (ICCCN) (vol. 8, pp. 1–7).

  7. Kerschen, G., Boe, P. D., Golinval, J. C., & Worden, K. (2005). Sensor validation using principal component analysis. The Institute of Physics Publishing Smart Materials and Structures, 14(1), 36–42.

    Article  Google Scholar 

  8. Dunia, R., Qin, S. J., Edgar, T. F., & Mcavoy, T. J. (1996). Identification of faulty sensors using principal component analysis. AIChE Journal Process System Engineering, 42(10), 2797–2812.

    Google Scholar 

  9. Kulla, J. (2010). Sensor validation using the minimum mean square error estimation. Elsevier Mechanical Systems and Signal Processing, 24(5), 1444–1457.

    Article  Google Scholar 

  10. Ibarguengoytia, P.H., Sucar, L.E, & Vadera, S. (2013). A probabilistic model for sensor validation. In Proceedings of the twelfth conference on uncertainty in artificial intelligence (pp. 332–339).

  11. Mattern, D.L., & Jaw, L.C. (1998). Using neural networks for sensor validation. In Proceedings of NASA 34th Joint propulsion conference (pp. 1–12)

  12. Xu, R., Zhang, G., Zhang, X., Haynes, L., Kwan, C., & Semega, K. (2006). Sensor validation using nonlinear minor component analysis. Springer Journal Advances in Neural Networks, 3973, 352–357.

    Google Scholar 

  13. Mengshoe, O.J., Darwiche, A., & Uckun, S. (2008). Sensor validation using Bayesian networks. In Proceedings of 9th international symposium on artificial intelligence, robotics, and automation in space (iSAIRAS-08).

  14. Abdelghani, M., & Friswellb, M. I. (2007). Sensor validation for structural systems with multiplicative sensor faults. Elsevier Mechanical Systems and Signal Processing, 21(1), 270–279.

    Article  Google Scholar 

  15. Ibarguengoytia, P. H., Sucar, L. E., & Vadera, S. (2001). Real-time intelligent sensor validation. IEEE Transactions on Power Systems, 16(4), 770–775.

    Article  Google Scholar 

  16. Jurk, P., & Hanzlek, Z. (2010). Simulation study of energy efficient scheduling for IEEE 802.15.4/ZigBee cluster-tree wireless sensor networks with time bounded data flows. In Proceedings of the international conference in emerging technology and factory automation (ETFA) (pp. 1–8).

  17. Marghescu, C., Pantazica, M., & Brodeala, A. (2011). Simulation of a wireless sensor network using Opnet. In Proceedings of the international symposium on design and technology in electronic packaging (SIITME) (pp. 249–252).

  18. Cuomo, F., Abbagnale, A., & Cipollone, E. (2013). Cross-layer network formation for energy-efficient IEEE 802.15.4/ZigBee wireless sensor networks. Elsevier Ad Hoc Networks, 11(2), 672–686.

    Article  Google Scholar 

  19. Guo, L., Peng, Y., Wang, X., Jiang, D., & Yu, Y. (2011). Performance evaluation for on-demand routing protocols based on OPNET modules in wireless mesh networks. Elsevier Computers and Electrical Engineering, 37(1), 106–114.

    Article  Google Scholar 

  20. Zhao, W., & Xie, J. (2011). OPNET-based modeling and simulation study on handoffs in Internet-based infrastructure wireless mesh networks. Computer Networks, 55(12), 2675–2688.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdo Mahyoub Almajidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almajidi, A.M., Pawar, V.P. A New System Model for Sensor Node Validation by Using OPNET. Wireless Pers Commun 108, 2389–2401 (2019). https://doi.org/10.1007/s11277-019-06527-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06527-3

Keywords

Navigation