[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Short-Ended Compact Metastructure Antenna with Interdigital Capacitor and U-shaped Strip

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A compact metastructure (MTS) antenna utilizing zeroth order resonance (ZOR) techniques has been reported in this paper. The proposed coplanar waveguide (CPW) based MTS antenna has made up of interdigital capacitor (IDC), split ring resonator (SRR) and strips (rectangular and U-shaped). ZOR is a magnificent technique by which small dimensions of the antenna is attained. The presented structure exhibits compact size of 0.24λ0 ×  0.27λ0  × 0.024λ0, where λ0 is the free space wavelength at ZOR frequency of 4.61 GHz. In the presented paper ZOR frequency is configured by series LC parameters as it follows short-ended boundary condition. The U-shaped strip is basically used to provide capacitance with the SRR which affects the resonance frequency by controlling the series inductance and capacitance of proposed short-ended structure. It is noticed that the presented antenna exhibits working band operation at 4.61 GHz (4.16–4.8 GHz) with input reflection coefficient of − 50.32 dB at ZOR frequency. The proposed antenna achieves properties such as omni-directional and dipolar radiation pattern in xz-plane and yz-plane respectively. Measured peak gain of 2.52 dB and simulated radiation efficiency of 94.27% permits the MTS antenna to be used widely in C-band applications. The designed antenna is fabricated and experimentally verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Lai, A., Leong, K. M. K. H., & Itoh, T. (2007). Infinite wavelength resonant antennas with monopolar radiation pattern based o periodic structures. IEEE Transactions on Antennas and Propagation, 55, 868–876.

    Article  Google Scholar 

  2. Caloz, C., & Itoh, T. (2005). Electromagnetic Metamaterials: Transmission Line Approach and Microwave Applications. Hoboken: Wiley.

    Book  Google Scholar 

  3. Shelby, R. A., Smith, D. R., & Schultz, S. (2001). Experimental verification of a negative index of refraction. Science, 292, 77–79.

    Article  Google Scholar 

  4. Iyer, A. K. & Eleftheraides, G. V. (2002) Negative refractive index metamaterials supporting 2-D waves. In Proc. IEEE MTT-S Int. Microw. Symp.Dig. 2,1067–1070.

  5. Eleftheriades, G. V., Iyer, A. K., & Kremer, P. C. (2002). Planar negative refractive index media using periodically LC loaded transmission lines. IEEE Transactions on Microwave Theory and Techniques, 50, 2702–2712.

    Article  Google Scholar 

  6. Singh, G. K., Chaudhary, R. K., & Srivastava, K. V. (2012). A compact zeroth order resonating antenna using complementary split ring resonator with mushroom type of structure. Progress In Electromagnetics Research (PIER) Letters, 28, 139–148.

    Article  Google Scholar 

  7. Ziolkowski, R. W., & Erentok, A. (2006). Metamaterial-based efficient electrically small antennas. IEEE Transactions on Antennas and Propagation, 54, 2113–2130.

    Article  Google Scholar 

  8. Majedi, M. S., & Attari, A. R. (2013). A compact and broadband metamaterial-inspired antenna. IEEE Antennas and Wireless Propogation Letters, 12, 345–348.

    Article  Google Scholar 

  9. Chi, P.-L., & Shih, Y.-S. (2015). Compact and bandwidth-enhanced Zeroth order resonant antenna. IEEE Antennas and Wireless Propagation Letters, 14, 285–288.

    Article  Google Scholar 

  10. Jang, T., Choi, J., & Lim, S. (2011). Compact coplanar waveguide (CPW)-fed zeroth-order resonant antennas with extended bandwidth and high efficiency on a vialess single layer. IEEE Transactions on Antennas and Propagation, 59, 363–372.

    Article  Google Scholar 

  11. Niu, B.-J., & Feng, Q.-Y. (2013). Bandwidth enhancement CPW-fed antenna based on epsilon negative zeroth- and first-order resonantors. IEEE Antennas and Wireless Propagation Letters, 12, 1125–1128.

    Article  Google Scholar 

  12. Pendry, J. B., Holden, A. J., Robbins, D. J., & Stewart, W. J. (1999). Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47, 2075–2084.

    Article  Google Scholar 

  13. Kim, O. S., & Breinbjerg, O. (2009). Miniaturised self-resonant split-ring resonator antenna. IET Electronics Letters, 45, 196–197.

    Article  Google Scholar 

  14. Zuffanelli, S., Zamora, G., Aguilà, P., Paredes, F., Martín, F., & Bonache, J. (2016). Analysis of the split ring resonator (SRR) antenna applied to passive UHF- RFID tag design. IEEE Transactions on Antennas and Propagation, 64, 856–864.

    Article  MathSciNet  Google Scholar 

  15. Baena, J. D., Bonache, J., Martin, J. F., et al. (2005). Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines. IEEE Transaction on Microwave Theory and Techniques, 53, 1451–1461.

    Article  Google Scholar 

  16. Jhu, J., & Eleftheriades, G. V. (2009). A compact transmission-line metamaterial antenna with extended bandwidth. IEEE Antennas and Wireless Propagation Letters, 8, 295–298.

    Article  Google Scholar 

  17. Antoniades, M. A., & Eleftheriades, G. V. (2008). A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Antennas and Wireless Propagation Letters, 7, 425–428.

    Article  Google Scholar 

  18. Kim, T. G., & Lee, B. (2009). Metamaterial-based compact zeroth-order resonant antenna. Electron. Letters., 45, 12–13.

    Article  Google Scholar 

  19. Gupta, A., Sharma, S. K., & Chaudhary, R. K. (2015). A compact dual-mode metamaterial-inspired antenna using rectangular type CSRR. Progress In Electromagnetics Research, 57, 35–42.

    Article  Google Scholar 

Download references

Acknowledgements

This research work is partially supported by Science and Engineering Research Board (SERB), DST, India under Project No. EEQ/2016/000023. The authors would also like to thank Mr. Avinash Chandra, IIT (ISM) Dhanbad, India for the assistance provided in measuring characteristics of proposed antenna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghvendra Kumar Chaudhary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukreja, J., Choudhary, D.K. & Chaudhary, R.K. A Short-Ended Compact Metastructure Antenna with Interdigital Capacitor and U-shaped Strip. Wireless Pers Commun 108, 2149–2158 (2019). https://doi.org/10.1007/s11277-019-06514-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06514-8

Keywords

Navigation