[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Optimal Energy Harvesting Strategy in Relaying Networks: Dynamic Allocation Scheme and Performance Analysis

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper evaluates the performance of a wireless powered communications system, where an energy-aware relay can ability of controlling proper energy harvesting parameters for obtaining maximal throughput. Considering a power splitting approach, the relay first can calculate percentage of harvested wireless energy from power supply source, and then transmits information to the destination. This paper proposes the dynamic harvesting power allocation policy for energy harvesting and analytical expressions for the delay-limited and delay-tolerant throughput related to amplify-and-forward relaying mode. In particular, the optimal power coefficients can be derived in closed-form expressions, in which the maximal throughput can be obtained in special case, i.e., high transmit power regime. In addition, the impact of transmit power, power splitting fraction, the fixed rate factors, noise levels are well studied. Simulation results validate the theoretical expressions and show the effectiveness of the proposed policy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  2. Krikidis, I., Timotheou, S., & Sasaki, S. (2012). RF energy transfer for cooperative networks: Data relaying or energy harvesting? IEEE Communications Letters, 16(11), 1772–1775.

    Article  Google Scholar 

  3. Ding, Z., & Poor, H. V. (2013). Cooperative energy harvesting networks with spatially random users. IEEE Signal Processing Letters, 20(12), 1211–1214.

    Article  Google Scholar 

  4. Nguyen, X.-X., & Do, D.-T. (2017). Optimal power allocation and throughput performance of full-duplex DF relaying networks with wireless power transfer-aware channel. EURASIP Journal on Wireless Communications and Networking, 2017(1), 152.

    Article  Google Scholar 

  5. Nguyen, K. T., Do, D.-T., Nguyen, X. X., Nguyen, N. T., & Ha, D. H. (2015). Wireless information and power transfer for full duplex relaying networks: Performance analysis. In Proceedings of recent advances in electrical engineering and related sciences (AETA 2015) (pp. 53–62), HCMC, Vietnam.

  6. Do, D.-T., Nguyen, H.-S., Vozk, M., & Nguyen, T.-S. (2017). Wireless powered relaying networks under imperfect channel state information: System performance and optimal policy for instantaneous rate. Radioengineering, 26(3), 869–877.

    Article  Google Scholar 

  7. Chen, H., Li, Y., Rebelatto, J. L., Uchoa-Filho, B. F., & Vucetic, B. (2015). Harvest-then-cooperate: Wireless-powered cooperative communications. IEEE Transactions on Signal Processing, 63(7), 1700–1711.

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhu, G., Zhong, C., Suraweera, H. A., Karagiannidis, G. K., Zhang, Z., & Tsiftsis, T. A. (2015). Wireless information and power transfer in relay systems with multiple antennas and interference. IEEE Transactions on Communications, 63(4), 1400–1417.

    Article  Google Scholar 

  9. Ding, H., da Costa, D. B., Liu, W.-L., & Ge, J. (2015). Enhancing cooperative diversity gains in dual-hop one-way/two-way AF relaying systems: A fully opportunistic role selection strategy. IEEE Transactions on Vehicular Technology, 64(8), 3440–3457.

    Article  Google Scholar 

  10. Zhou, Z., Peng, M., Zhao, Z., & Li, Y. (2015). Joint power splitting and antenna selection in energy harvesting relay channels. IEEE Signal Processing Letters, 22(7), 823–827.

    Article  Google Scholar 

  11. Minasian, A., Shahbaz Panahi, S., & Adve, R. S. (2014). Energy harvesting cooperative communication systems. IEEE Transactions on Wireless Communications, 13(11), 6118–6131. Nov.

    Article  Google Scholar 

  12. Chen, H., Li, Y., Jiang, Y., Ma, Y., & Vucetic, B. (2015). Distributed power splitting for SWIPT in relay interference channels using game theory. IEEE Transactions on Wireless Communications, 14, 410–420.

    Article  Google Scholar 

  13. Ho, C. K., & Zhang, R. (2010). Optimal energy allocation for wireless communications powered by energy harvesters. In Proceedings of 2010 IEEE international symposium on information theory proceedings (pp. 2368 –2372) (ISIT)

  14. Ozel, O., Tutuncuoglu, K., Yang, J., Ulukus, S., & Yener, A. (2011). Transmission with energy harvesting nodes in fading wireless channels: Optimal policies. IEEE Journal on Selected Areas in Communications, 29(8), 1732–1743.

    Article  Google Scholar 

  15. Huang, C., Zhang, R., & Cui, S. (2011). Throughput maximization for the Gaussian relay channel with energy harvesting constraints. CoRR, ArXiv:abs/1109.0724

  16. Gurakan, B., Ozel, O., Yang, J., & Ulukus, S. (2012). Energy cooperation in energy harvesting wireless communications. In Proceedings of 2010 IEEE international symposium on information theory proceedings (pp. 965–969) (ISIT)

  17. Do, D.-T. (2015). Energy-aware two-way relaying networks under imperfect hardware: Optimal throughput design and analysis. Telecommunication Systems Journal (Springer), 62(2), 449–459.

    Article  Google Scholar 

  18. Do, D.-T. (2016). Optimal throughput under time power switching based relaying protocol in energy harvesting cooperative network. Wireless Personal Communications (Springer), 87(2), 551–564.

    Article  Google Scholar 

  19. Nguyen, T. N., Do, D.-T., Tran, P. T., & Voznak, M. (2016). Time switching for wireless communications with full-duplex relaying in imperfect CSI condition. KSII Transactions on Internet and Information Systems, 10(9), 4223–4239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thuan Do.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 2

The outage probability can be computed by

$$\begin{aligned} \Pr \left\{ {\frac{{\eta P^2 \left| h \right| ^4 \left| g \right| ^2 \beta \left( {1 - \beta } \right) }}{{P\left| h \right| ^2 L+ d_1^{2m} d_2^m \sigma _R^2 \sigma _D^2 }} < \gamma _0 } \right\} \end{aligned}$$
(23)

where \(L={\beta \eta \left| g \right| ^2 d_1^m \sigma _R^2 + d_1^m d_2^m \sigma _D^2 \left( {1 - \beta } \right) }\). It can be re-expressed by

$$\begin{aligned} \Pr \left\{ {\left( {\left| h \right| ^2 - h_1 } \right) \left( {\left| h \right| ^2 - h_2 } \right) < 0} \right\} \end{aligned}$$
(24)

in which \(h_1\) and \(h_2\) are outcomes of the function below

$$\begin{aligned} \begin{array}{l} \eta P^2 \left| h \right| ^4 \left| g \right| ^2 \beta \left( {1 - \beta } \right) - d_1^{2m} d_2^m \sigma _R^2 \sigma _D^2 \gamma _0 \\ - P\left| h \right| ^2 \left( {\beta \eta \left| {g } \right| ^2 d_1^m \sigma _R^2 + d_1^m d_2^m \sigma _D^2 \left( {1 - \beta } \right) } \right) \gamma _0 = 0 \\ \end{array} \end{aligned}$$
(25)

and \(h_1\) and \(h_2\) are determined by

$$\begin{aligned} h_1& = {} (B - \sqrt{B^2 + 4AC} {/}(2A) \end{aligned}$$
(26)
$$\begin{aligned} h_2& = {} (B + \sqrt{B^2 + 4AC} {/}(2A) \end{aligned}$$
(27)

where

$$\begin{aligned} A& = {} \eta P^2 \left| g \right| ^2 \beta \left( {1 - \beta } \right) \end{aligned}$$
(28)
$$\begin{aligned} B& = {} P\left( {\beta \eta \left| g \right| ^2 d_1^m \sigma _R^2 + d_1^m d_2^m \sigma _D^2 \left( {1 - \beta } \right) } \right) \gamma _0 \end{aligned}$$
(29)
$$\begin{aligned} C& = {} d_1^{2m} d_2^m \sigma _R^2 \sigma _D^2 \gamma _0 \end{aligned}$$
(30)

Due to \(h_1 <0\), the given outage probability can be rewritten as

$$\begin{aligned}&P_{out} = \Pr \left\{ {0< \left| {h_S } \right| ^2 < h_2 } \right\} = F_{\left| {h_S } \right| ^2 } \left( {h_2 } \right) \end{aligned}$$
(31)
$$\begin{aligned}&F_{\left| {h_S } \right| ^2 } \left( {h_2 } \right) = 1 - e^{ - \;\frac{{h_2 }}{{\varOmega _h }}} \end{aligned}$$
(32)

Thus, we obtain new expression as

$$\begin{aligned} F_{\left| {h_S } \right| ^2 } \left( {h_2 } \right) = 1 - e^{ - \;\frac{{P\left( {\beta \eta \left| {g } \right| ^2 d_1^m \sigma _R^2 + d_1^m d_2^m \sigma _D^2 \left( {1 - \beta } \right) } \right) \gamma _0 + \sqrt{\varDelta _2 } }}{{2\eta P^2 \left| {g } \right| ^2 \beta \left( {1 - \beta } \right) \varOmega _h }}} \end{aligned}$$
(33)

This is end of Proof of Proposition 2 by averaging value of channel gain of h.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Do, DT. Optimal Energy Harvesting Strategy in Relaying Networks: Dynamic Allocation Scheme and Performance Analysis. Wireless Pers Commun 108, 1097–1111 (2019). https://doi.org/10.1007/s11277-019-06456-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06456-1

Keywords

Navigation