[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Impact of Nonlinear Impairments on Power Budget and Transmission Power Penalties in High Capacity Long Haul Optical Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Fiber-optic communication systems predominantly when employ in the nonlinear regime, generally do not perform truly as theory would speculate. This paper researched the theoretical model, power budget and transmission power penalties of the high capacity long haul optical network under the influence of nonlinear impairments. The presume model is affirmed using important nonlinear factors like effective area, launch power, received power, refractive index and length of the fiber. The power budget and transmission performance of the high capacity long haul optical network are analyzed on the basis of bit error rate and optical signal noise to ratio against launch power, length of the fiber, effective area and nonlinear refractive index. The simulation results manifest significant impact of nonlinear impairments on power budget and transmission power penalties of the high capacity long haul optical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Agrawal, G. P. (2013). Nonlinear fiber optics (5th ed.). New York: Academic Press.

    MATH  Google Scholar 

  2. Boyd, R. W. (2008). Nonlinear optics (3rd ed.). London: Academic Press Inc.

    Google Scholar 

  3. Semrau, Daniel. (2018). The impact of transceiver noise on digital nonlinearity compensation. Journal of Lightwave Technology, 36(3), 695–702.

    Article  Google Scholar 

  4. Dar, R., & Feder, M. (2015). Inter-channel nonlinear interference noise in WDM systems: modeling and mitigation. Journal of Lightwave Technology, 33(5), 1044–1053.

    Article  Google Scholar 

  5. Shtaif, M., Dar, R., Mecozzi, A., & Feder, M. (2014). Nonlinear interference noise in WDM systems and approaches for its cancelation. In Proceeding of European conference on optical communications (ECOC), Cannes.

  6. Dar, R., Feder, M., Mecozzi, A., & Shtaif, M. (2014). Accumulation of nonlinear interference noise in fiber-optic systems. Optics Express, 22, 14199–14211.

    Article  Google Scholar 

  7. Dar, R., Geller, O., Feder, M., Mecozzi, A., & Shtaif, M. (2014). Mitigation of inter-channel nonlinear interference in WDM systems. In Proceeding of European conference on optical communications (ECOC), Cannes.

  8. Dar, R., & Winzer, P. J. (2017). Nonlinear interference mitigation: methods and potential gain. Journal of Lightwave Technology, 35(4), 903–930.

    Google Scholar 

  9. Marsella, D., Secondini, M., Agrell, E., & Forestieri, F. (2015). A simplestrategy for mitigating XPM in proceeding of nonlinear WDM optical systems. In Optical fiber communication conference (OFC), Optical Society of America.

  10. Zhu, P., & Li, J. (2016). Dispersion-tolerant upstream PON transmission scheme with improved power budget based on optical carrier suppression. In: Proceeding of 15th international conference on optical communications and networks (ICOCN), Hangzhou, China.

  11. Khan, Y. (2014). Power budget analysis of colorless hybrid WDM/TDM-PON scheme using downstream DPSK and re-modulated upstream OOK data signals. Journal of Optical Communications, 35(3), 231–237.

    Article  MathSciNet  Google Scholar 

  12. Qiu, M., Zhuge, Q., Chagnon, M., Gao, Y., Xu, X., Morsy-Osman, M., et al. (2014). Digital subcarrier multiplexing for fiber nonlinearity mitigation in coherent optical communication systems. Optics Express, 22, 18770–18777.

    Article  Google Scholar 

  13. Serena, P. (2016). Nonlinear signal noise interaction in optical links with nonlinear equalization. Journal of Lightwave Technology, 34, 1476–1483.

    Article  Google Scholar 

  14. Lin, B., & Li, J. (2014). Effect of fiber nonlinearity on the power budget for direct detection OFDM-PON. In Proceeding of IEEE/CIC international conference on communications in China (ICCC).

  15. Yousefi, M. I., & Kschischang, F. R. (2014). Information transmission using the nonlinear Fourier transform, part I: Mathematical tools. IEEE Transactions on Information Theory, 60, 4312–4328.

    Article  MathSciNet  MATH  Google Scholar 

  16. Wahls, S., & Poor, H. V. (2015). Fast numerical nonlinear Fourier transforms. IEEE Transactions on Information Theory, 61, 6957–6974.

    Article  MathSciNet  MATH  Google Scholar 

  17. Eliasson, H., Johannisson, P., Karlsson, M., & Andrekson, P. A. (2015). Mitigation of nonlinearities using conjugate data repetition. Optics Express, 23, 2392–2402.

    Article  Google Scholar 

  18. Le, S. T., Prilepsky, J. E., & Turitsyn, S. K. (2014). Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers. Optics Express, 22, 26720–26741.

    Article  Google Scholar 

  19. Yankov, M. P., Fehenberger, T., & Barletta, L. (2015). Low complexity tracking of laser and nonlinear phase noise in WDM optical fiber systems. Journal of Lightwave Technology, 33, 4975–4984.

    Article  Google Scholar 

  20. Lin, C., Chandrasekhar, S., Winzer, P. J. (2015). Experimental study of the limits of digital nonlinearity compensation in DWDM systems. In Proceeding of optical fiber communication conference (OFC), Holmdel, NJ 07733, USA.

  21. Golani, O., Dar, R., Feder, M., & Shtaif, M. (2016). Modeling the bit-error-rate performance of nonlinear fiber-optic systems. Journal of Lightwave Technology, 34, 3482–3489.

    Article  Google Scholar 

  22. Dar, R., Feder, M., Mecozzi, A., & Shtaif, M. (2016). Pulse collision picture of inter-channel nonlinear interference noise in fiber-optic communications. Journal of Lightwave Technology, 34, 593–607.

    Article  Google Scholar 

  23. Ali, F., Khan, Y., Ali, A., et al. (2018). Minimization of nonlinear impairments and its impact on transmission performances of high-capacity long-haul optical networks. Journal of Optical Communications. https://doi.org/10.1515/joc-2018-0092.

    Google Scholar 

  24. Keiser, G. (2008). Optical fiber communication (4th ed.). New York: McGraw-Hill.

    Google Scholar 

  25. http://harrisbroadcast.com/applicationnotes/fiberoptics/calculator/default.asp.

  26. Fujita, M. J., Ramesh, S. K., & Russell, L. (2003). Fiber optic communication link design. California.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousaf Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Y., Ali, F. & Ali, A. Impact of Nonlinear Impairments on Power Budget and Transmission Power Penalties in High Capacity Long Haul Optical Networks. Wireless Pers Commun 106, 1001–1013 (2019). https://doi.org/10.1007/s11277-019-06200-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06200-9

Keywords

Navigation