[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Lightweight Security Scheme for Internet of Things

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The compressive sensing method presents itself as a promising technique in many fields specially for the Internet of Things and Wireless sensor networks applications. That is because, the compressive sensing has the major advantage of performing lightweight encryption and compression simultaneously. It leads to secure the network in addition to prolong the network life time. However, chosen plaintext attacks and key distribution are still major challenges facing the compressive sensing method. This paper focuses on the compressive sensing method according to security issue, and propose an efficient lightweight security scheme that addressee the previous challenges. Moreover, we use experimental data collected from a real sensors located in Intel Berkeley Research Lab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chen, L., Thombre, S., Jarvinen, K., Lohan, E. S., Alen-Savikko, A. K., Leppakoski, H., et al. (2017). Robustness, security and privacy in location-based services for future IoT: A survey. IEEE Access, 5(99), 1.

    Google Scholar 

  2. Palopoli, L., Passerone, R., & Rizano, T. (2011). Scalable offline optimization of industrial wireless sensor networks. IEEE Transactions on Industrial Informatics, 7(2), 328–329.

    Article  Google Scholar 

  3. Mollin, R. A. (2006). An introduction to cryptography. Boca Raton: CRC Press.

    MATH  Google Scholar 

  4. Vanstone, S. A., Menezes, A. J., & Oorschot, P. C. (1999). Handbook of applied cryptography. Boca Raton: CRC Press.

    MATH  Google Scholar 

  5. Fragkiadakis, A., Tragos, E., & Traganitis, A. (2014). Lightweight and secure encryption using channel measurements. In 4th international conference on wireless communications, vehicular technology, information theory and aerospace, Aalborg (pp. 1–5).

  6. Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  7. Candes, E. J., & Tao, T. (2006). Near-optimal signal recovery from random projections: Universal encoding strategies. IEEE Transactions on Information Theory, 52(12), 5406–5425.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cossalter, M., Valenzise, G., Tagliasacchi, M., & Tubaro, S. (2010). Joint compressive video coding and analysis. IEEE Transactions on Multimedia, 12(3), 168183.

    Article  Google Scholar 

  9. Premnath, S., Jana, S., Croft, J., Gowda, P., Clark, M., Kasera, S., et al. (2013). Secret key extraction from wireless signal strength in real environments. IEEE Transactions on Mobile Computing, 12(5), 917–930.

    Article  Google Scholar 

  10. Li, Z., Xu, W., Miller, R., & Trappe, W. (2006). Securing wireless systems via lower layer enforcements, In Proceedings of the WiSe (pp. 33–42).

  11. Dautov, R., & Tsouri, G. (2013). Establishing secure measurement matrix for compressed sensing using wireless physical layer security. In Proceedings of ICNC (pp. 354–358).

  12. Fragkiadakis, L., Tragos, E., Makrogiannakis, A., Papadakis, S., Charalampidis, P., & Surligas, M. (2016). Signal processing techniques for energy efficiency, security, and reliability in the IoT domain (pp. 19–447). New York: Springer.

    Google Scholar 

  13. Rachlin, Y., & Baron, D. (2008). The secrecy of compressed sensing measurements. In Proceedings of 46th annual Allerton conference on communication, control, and computing (pp. 813–817).

  14. Cambareri, V., Mangia, M., Pareschi, F., Rovatti, R., & Setti, G. (2015). Low-complexity multiclass encryption by compressed sensing. IEEE Transactions on Signal Processing, 63, 21832195.

    MathSciNet  MATH  Google Scholar 

  15. Yu, L., Barbot, J. P., Zheng, G., & Sun, H. (2010). Compressive sensing with chaotic sequence. IEEE Signal Processing Letters, 17(8), 731734.

    Google Scholar 

  16. Zhang, L., Wong, K., Li, C., & Zhang, Y. (2014). Towards secure compressive sampling scheme. CoRR.

  17. Fragkiadakis, A., Kovacevic, L., & Tragos, E. (2016). Enhancing compressive sensing encryption in constrained devices using chaotic sequences. In Proceedings of the 2nd workshop on experiences in the design and implementation of smart objects (pp. 17–22).

  18. Liu, H., Zhu, Z., Jiang, H., & Wang, B. (2008). A novel image encryption algorithm based on improved 3D Chaotic Cat Map. In The 9th international conference for young computer scientists.

  19. Candes, E., & Tao, T. (2006). Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52(52), 145–156.

    MathSciNet  MATH  Google Scholar 

  20. Baraniuk, R. G. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.

    Article  Google Scholar 

  21. Mallat, S. (1999). A wavelet tour of signal processing. Cambridge: Academic Press.

    MATH  Google Scholar 

  22. Venkataramani, R., & Bresler, Y. (1998). Sub-nyquist sampling of multiband signals: Perfect reconstruction and bounds on aliasing error. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 12–15).

  23. Tropp, J., & Gilber, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(14), 4655–4666.

    Article  MathSciNet  MATH  Google Scholar 

  24. Donoho, D., Yaakov, T., Drori, I., & Jean, S. (2012). Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory, 58(2), 1094–1121.

    Article  MathSciNet  MATH  Google Scholar 

  25. Deanna, N., & Roman, V. (2009). Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics, 9(3), 317–334.

    Article  MathSciNet  MATH  Google Scholar 

  26. Luo, C., Wu, F., Sun, J., & Chen, C. W.(2009). Compressive data gathering for large-scale wireless sensor networks. In Proceedings of the 15th annual international conference on mobile computing and networking, MobiCom 09 (pp. 145–156), New York, NY, USA.

  27. Heinzelman, W., Chandrakasan, A., & Balakrishnan, H. (2000). Energy efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii International Conference (pp. 3005–3014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karan Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, A., Singh, K. Lightweight Security Scheme for Internet of Things. Wireless Pers Commun 104, 577–593 (2019). https://doi.org/10.1007/s11277-018-6035-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-018-6035-4

Keywords

Navigation