Abstract
Recently, high-performance mobile computer devices such as smart phones and tablet devices spread rapidly. They have attracted attention as a new promising platform for parallel and distributed applications. Based on the background, we are developing a cluster computer system using mobile devices or single board computers running Android OS. However, since mobile devices can move anywhere, node computers might leave from the cluster and new nodes might join the cluster. In this paper, we present an Android Cluster system that can reconfigure the system’s scale dynamically. Our system can automatically detect the change in the number of computation nodes and reconfigure the cluster’s nodes, even while parallel and distributed application is running. Furthermore, we show preliminary performance results of our system. The results show that our cluster provides the scalable performance to the number of nodes in parallel computation. Finally, it is confirmed that the mechanism of load balancing per process basis and the mechanism of switching to efficient data communication method can reduce the execution time of parallel applications. Our evaluation result shows that the execution time can be reduced up to 11.8% by load balancing per process basis, as compared to the load balancing per node basis, and shows that the execution time can be reduced 68% at maximum, by switching the communication method between processes to efficient one.
Similar content being viewed by others
References
Sawada, Y., Arai, Y., Ootsu, K., Yokota, T., & Ohkawa, T. (2015). An android cluster system capable of dynamic node reconfiguration. In Proceedings of the seventh international conference on ubiquitous and future networks (ICUFN 2015) (pp. 689–694).
Juno, M. M., Bhangwar, A. R., & Laghari, A. A. (2013). Grids of android mobile devices. In ICICTT (pp. 1–3).
Busching, F., Schildt, S., & Wolf, L. (2012). DroidCluster: Towards smartphone cluster computing the streets are paved with potential computer clusters. In Distributed computing systems workshops (ICDCSW) (pp. 114–117).
Hinojos, G., Tade, C., Park, S., Shires, D., & Bruno, D. (2013). Bluehoc: Bluetooth ad-hoc network android distributed computing. In International conference on parallel and distributed processing techniques and applications (PDPTA) (pp. 468–473).
Kang, S. J., Lee, S. Y., & Lee, K. M. (2014). Performance comparison of OpenMP, MPI, and mapreduce in practical problems. Advances in Multimedia, 575687, 1–10.
Gabriel, E., Fagg, G. E., Bosilca, G., Angskun, T., Dongarra, J. J., Squyres, J. M., et al. (2004). Open MPI: Goals, concept, and design of a next generation mpi implementation. In Proceedings, 1th European PVM/MPI users’ group meeting (pp. 97–104).
Qian, X., Zhu, G., & Li, X. F. (2012). Comparison and analysis of the three programming models in Google android. In First Asia-Pacific programming languages and compilers workshop (APPLC) in conjunction with PLDI 2012 (pp. 1–9).
Arai, Y., Ootsu, K., Yokota, T., & Ohkawa, T. (2014). Implementation of wireless connected android cluster computer system supporting automatic clustering. Technical Report of IEICE, 114(155), 143–148. (in Japanese).
Hursey, J., Mattox, T. I., & Lumsdaine, A. (2009) Iterconnect agnostic checkpoint/restart in Open MPI. In HPDC ’09: Proceedings of the 18th ACM international symposium on high performance distributed computing (pp. 1–10).
Hargrove, P. H., & Duel, J. C. (2006). Berkeley lab checkpoint/restart (BLCR) for Linux clusters. Journal of Physics: Conference Series, 46, 494–499.
Ansel, J., Arya, K., & Cooperman, G. (2009). DMTCP: Transparent checkpointing for cluster computations and the desktop. In 23rd IEEE international parallel and distributed processing symposium, IPDPS2009 (pp. 1–12).
Sawada, Y., Arai, Y., Ootsu, K., Yokota, T., & Ohkawa, T. (2015). Proposal of load balancing technique for MPI parallel computation allowing dynamic change of the number of nodes. In Proceedings of the 77th national convention of IPSJ (Vol. 1, pp. 113–114) (in Japanese).
Bailey, D. H., Dagum, L., Barszcz, E., & Simon, H. D. (1992). NAS parallel benchmark results. In Supercomputing ’92 proceedings of the 1992 ACM/IEEE conference on supercomputing (pp. 386–393).
Sawada, Y., Ootsu, K., Yokota, T., & Ohkawa, T. (2016). Realization of MPI environment to perform load balancing per process basis towards dynamic change of node configuration, technical report of IPSJ (Vol. 2016-ARC-220, No. 5, pp. 1–6) (in Japanese).
Acknowledgements
Funding was provided by Japan Society for the Promotion of Science (Grant Nos. 15K00068 and 16K00068).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sawada, Y., Arai, Y., Ootsu, K. et al. Performance of Android Cluster System Allowing Dynamic Node Reconfiguration. Wireless Pers Commun 93, 1067–1087 (2017). https://doi.org/10.1007/s11277-017-3978-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-017-3978-9