Abstract
The introduction of a high number of small cells in cellular networks and the complementary adoption of WLAN technologies in unlicensed spectrum are interesting options to attend the increasing demand for Internet traffic in wireless broadband access networks. One alternative for integrating both solutions is the aggregation of ISM unlicensed spectrum to licensed bands, using wireless networks defined by IEEE and 3GPP. While Wi-Fi networks are aggregated to LTE small cells via LTE/WLAN Aggregation (LWA), in proposals like LTE-U and LAA-LTE, the LTE air interface itself is used for transmission on the unlicensed band. Wi-Fi technology is widespread and also operates in the 5 GHz ISM spectrum bands, which may bring performance issues due to the coexistence of both technologies in the same spectrum band. This work is dedicated to the study of coexistence between LTE and Wi-Fi access systems operating in 5 GHz ISM Spectrum. A distributed coordination mechanism is proposed and evaluated via system-level simulations, and results indicate that the proposed solutions provide significant gains when compare to the situation without distributed coordination.
Similar content being viewed by others
References
Cisco. (2015). Global mobile data traffic forecast update, 2014–2019. White paper, Cisco Visual Networking Index (VNI) February. http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html.
Frias, Z., & Perez, J. (2012). Techno-economic analysis of femtocell deployment in long-term evolution networks. EURASIP Journal on Wireless Communications and Networking, 2012(1), 288.
IEEE. (2013). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications, Amendment 4: Enhancements for very high throughput for operation in bands below 6 GHz (ieee std 802.11ac). Technical Report IEEE 802.11ac, IEEE Standards Association.
3GPP. (2015). Feasibility on licensed-assisted access to unlicensed spectrum (release 13). Technical Report 3GPP TR 36.889 V0.3.1, 3rd Generation Partnership Project (3GPP) February. http://www.3gpp.org/ftp/Specs/archive/36_series/36.889/36889-031.zip.
LTE-U Forum. (2015). LTE-U SDL coexistence specifications. Specification v1.0, LTE-U Forum. http://www.lteuforum.org/uploads/3/5/6/8/3568127/lte-u_forum_lte-u_sdl_coexistence_specifications_v1.0.pdf.
Perahia, E., & Stacey, R. (2008). Next generation wireless LANs—throughput, robustness and reliability in 802.11n. Cambridge: Cambridge University Press.
Kleinrock, L., & Tobagi, F. A. (1975). Packet switching in radio channels: Part I–carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Transactions on Communications, 23(12), 1400–1416.
Abinader, F. M, Jr., Almeida, E. P. L., & Choudhury, S., et al. (2014). Performance evaluation of IEEE 802.11n WLAN in dense deployment scenarios. In 2014 IEEE 80th vehicular technology conference (VTC2014-Fall), Institute of Electrical & Electronics Engineers (IEEE).
Ong, E. H., Kneckt, J., Alanen, O., Chang, Z., Huovinen, T., & Nihtila, T. (2011). IEEE 802.11ac: Enhancements for very high throughput WLANs. In Personal indoor and mobile radio communications (PIMRC), 2011 IEEE 22nd international symposium on, 2011, pp. 849–853.
Aboul-Magd, O. (2014). 802.11 HEW SG proposed PAR. In Project authorization request (PAR) IEEE 802.11-14/0165r1, IEEE High Efficient Wi-Fi (HEW) Study Group (SG) March. https://mentor.ieee.org/802.11/dcn/14/11-14-0165-01-0hew-802-11-hew-sg-proposed-par.docx.
Wang, L., Lan, Z., Kang, H., Fang, Y., & Stacey, R., et al. (2014). IEEE 802.11ax functional requirements. IEEE 802.11 TGax document IEEE 802.11-14/1009r02. IEEE 802.11 WG September. https://mentor.ieee.org/802.11/dcn/14/11-14-1009-02-00ax-proposed-802-11ax-functional-requirements.doc.
Sesia, S., Toufik, I., & Baker, M. (2011). LTE—the UMTS long term evolution: From theory to practice (2nd ed.). Hoboken: Wiley.
Gao, B., Park, J., Yang, Y., & Roy, S. (2012). A taxonomy of coexistence mechanisms for heterogeneous cognitive radio networks operating in TV white spaces. IEEE Wireless Communications, 19(4), 41–48.
Baykas, T., Kasslin, M., Cummings, M., Kang, H., Kwak, J., Paine, R., et al. (2012). Developing a standard for TV white space coexistence: Technical challenges and solution approaches. IEEE Wireless Communications, 19(2), 10–22.
Matinmikko, M., Palola, M., Saarnisaari, H., Heikkila, M., Prokkola, J., Kippola, T., et al. (2013). Cognitive radio trial environment: First live authorized shared access-based spectrum-sharing demonstration. IEEE Vehicular Technology Magazine, 8(3), 30–37.
Geier, J. (2004). Assigning 802.11b access point channels. Technical Report, Wi-Fi Planet http://www.wi-fiplanet.com/tutorials/article.php/972261.
Chandra, R., Mahajan, R., Moscibroda, T., Raghavendra, R., & Bahl, P. (2008). A case for adapting channel width in wireless networks. ACM SIGCOMM Computer Communication Review, 38(4), 135–146.
Benmesbah, L., Ling, B., Chandrasekhar, V., Chu, X., & Dohler, M. (2010). Decentralized spectral resource allocation for OFDMA downlink of coexisting macro/femto networks using filled function method. In Communication systems networks and digital signal processing (CSNDSP), 2010 7th international symposium on, 2010, pp. 881–885.
Chaves, F. S., Almeida, E. P. L., Vieira, R. D., Cavalcante, A. M., Abinader, F. M, Jr., Choudhury, S., & Doppler, K. (2013). LTE UL power control for the improvement of LTE/Wi-Fi coexistence. In 2013 IEEE 78th vehicular technology conference (VTC Fall), Institute of Electrical & Electronics Engineers (IEEE)
Rahman, M., Behravan, A., Koorapaty, H., Sachs, J., & Balachandran, K. (2011). License-exempt LTE systems for secondary spectrum usage: Scenarios and first assessment. In New frontiers in dynamic spectrum access networks (DySPAN), 2011 IEEE symposium on, 2011, pp. 349–358.
Nihtila, T., Tykhomyrov, V., Alanen, O., Uusitalo, M., Sorri, A., & Moisio, M., et al. (2013). System performance of LTE and IEEE 802.11 coexisting on a shared frequency band. In Wireless communications and networking conference (WCNC), (pp. 1038–1043). IEEE.
3GPP. (2015). RP-152272: New Work item on enhanced LAA for LTE (Release 14). In 3GPP TSG RAN Meeting #70, 3rd generation partnership project (3GPP). ftp://ftp.3gpp.org/tsg_ran/TSG_RAN/TSGR_70/Docs/RP-152272.zip.
3GPP. (2016). RP-160600: New Work Item on enhanced LWA (Release 14). In 3GPP TSG RAN meeting #71, 3rd generation partnership Project (3GPP). ftp://ftp.3gpp.org/tsg_ran/TSG_RAN/TSGR_71/Docs/RP-160600.zip.
CableLabs, Rogers, Benu Networks, Ruckus Wireless. (2014). CableLabs perspectives on LTE-U coexistence with Wi-Fi and operational modes for LTE-U. In 3GPP contribution R1-150134, 3GPP. http://www.3gpp.org/ftp/workshop/2014-06-13_LTE-U/Docs/RWS-140004.zip.
Qualcomm. (2015). LTE-U Forum technical report overview. Technical Report, LTE-U Forum.http://lteuforum.org/uploads/3/5/6/8/3568127/lte-u_forum_technical_report_overview_may_28_2015.pdf.
Draft Coexistence Test Plan. (2016). v0.8.4 —Alpha—March 2016, Wi-Fi Alliance. https://www.wi-fi.org/file/draft-coexistence-test-plan.
Ghosh, A., Ratasuk, R., Mondal, B., Mangalvedhe, N., & Thomas, T. (2010). LTE-advanced: Next-generation wireless broadband technology [invited paper]. IEEE Wireless Communications, 17(3), 10–22.
Padden, J. (2014). Wi-fi vs eu LBT: Houston, we have a problem. Webpage, CableLabs. http://www.cablelabs.com/wi-fi-vs-eu-lbt-houston-we-have-a-problem/.
Almeida, E. P. L., Cavalcante, A. M., & Abinader, F. M, Jr., et al. (2013). Enabling LTE/WiFi coexistence by LTE blank subframe allocation. In 2013 IEEE international conference on communications (ICC). Institute of Electrical and Electronics Engineers (IEEE).
Abinader, F. M, Jr., Almeida, E. P., Chaves, Fd S, et al. (2014). Enabling the coexistence of LTE and Wi-Fi in unlicensed bands. IEEE Communications Magazine, 52(11), 54–61.
Merlin, S., Barriac, G., Sampath, H., Cariou, L., Derham, T., Rouzic, J. P. L., & Stacey, R., et al. (2014). IEEE 802.11ax simulation scenarios. In IEEE 802.11 TGax document IEEE 802.11-14/0980r10, IEEE 802.11 WG August. https://mentor.ieee.org/802.11/dcn/14/11-14-0980-10-00ax-simulation-scenarios.docx.
Paiva, R., Papadimitriou, P., & Choudhury, S. (2013). A physical layer framework for interference analysis of LTE and Wi-Fi operating in the same band. Signals, systems and computers, 2013 Asilomar conference on, 2013, pp. 1204–1209.
Author information
Authors and Affiliations
Corresponding author
Additional information
Fuad was with INDT at the time this paper was submitted.
Rights and permissions
About this article
Cite this article
Abinader, F.M., de Sousa, V.A., Choudhury, S. et al. LTE/Wi-Fi Coexistence in 5 GHz ISM Spectrum: Issues, Solutions and Perspectives. Wireless Pers Commun 99, 403–430 (2018). https://doi.org/10.1007/s11277-017-5114-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-017-5114-2