Abstract
In this study curtailing of idle current in 1T1C and 1T1M DRAM cells by increasing threshold voltage during holding state is analyzed. This is attained by connecting the bulk to source in the active phases and pulling it below source potential throughout the holding phase. The proposed technique leads to body effect which affects the threshold voltage improving leakage current. The 1T1C and 1T1M discussed in this paper are volatile and non-volatile (memristor based) respectively. Memory design is fast becoming the pacemaker in the modern technology design which now requires DRAM cells with prolonged holding period and low idle power hence the need for lowering the leakage current. The dynamic nature of the 1T1C is due to charge leakage and the leakage current flowing through the 1T1M cell affects mem-resistance all this leading to state distortion. Idle current has of-late become one of the major contributors of power in large memory arrays in which in-active periods now dominates active period and by this technique idle power is reduced in both volatile and non-volatile cells. The proposed technique was implemented and simulations were done at different voltage levels at 45 nm technology. The method improved the leakage current, holding time and leakage power but at the expense of area and writing power.
Similar content being viewed by others
Abbreviations
- 1T1C:
-
One transistor one capacitor
- 1T1M:
-
One transistor one memristor
- DRAM:
-
Dynamic random access memory
- NMOS:
-
N-channel MOSFET
- VDD :
-
Supply voltage (+ ve)
- Pdyn :
-
Dynamic power
- Vt :
-
Threshold voltage
- Tpd :
-
Transistor propagation delay
- fmax :
-
Maximum operating frequency
- Ileak :
-
Leakage current
- S:
-
Subthreshold slope
- Pidle :
-
Idle power
- Pave :
-
Average power
- Pstatic biasing :
-
Static power
- Vtno :
-
Threshold voltage @ zero bias
- γ :
-
Coefficient of body effect
- Vsb :
-
Voltage across and source and body
- Vgs :
-
Gate-source voltage
- Tox :
-
Oxide layer thickness
- SiO2 :
-
Silicon dioxide
- J:
-
Leakage current density
- Vb :
-
Junction voltage
- Io :
-
Current@Vgs = Vt
- Isub :
-
Subthreshold current
- M(q):
-
Memresistance
- Pt :
-
Platinum nano-wire contacts
- O2 :
-
Positively charged oxygen ion vacancies
- RON :
-
ON-resistance
- ROFF :
-
OFF resistance
- VLSI:
-
Very large scale integration
- L:
-
Length of TiO2 + TiO2−x
- Wlt :
-
Width of the region
- Vlt :
-
Voltage across the memristor device
- frefresh :
-
Refreshing frequency
- tn :
-
Holding time
- B:
-
Ratio of the maximum R OFF to R ON
- µv :
-
Dopant mobility
- Vbias :
-
Biasing voltage
- Vsb :
-
Source to body voltage
References
Tawfik, S., Liu, Z., & Kursun, V. (2007). Independent-gate and tied-gate FinFET SRAM circuits: Design guidelines for reduced area and enhanced stability. In 2007 International conference on microelectronics.
Helms, D., Schmidt, E., & Nebel, W. (2004). Leakage in CMOS circuits—An introduction. In E. Macii, V. Paliouras & O. Koufopavlou (Eds.), Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2004. Lecture Notes in Computer Science, (Vol. 3254). Berlin, Heidelberg: Springer.
Haraszti, T. (2000). CMOS memory circuits. Boston: Kluwer Academic.
Sakode, V., Lombardi, F., & Han, J. (2012). Cell design and comparative evaluation of a novel 1T memristor-based memory. In Proceedings of the 2012 IEEE/ACM international symposium on nanoscale architectures—NANOARCH ‘12.
Rabaey, J., & Pedram, M. (1996). Low power design methodologies. Boston: Kluwer Academic Publishers.
Akashe, S., & Sharma, S. (2012). Leakage current reduction techniques for 7T SRAM cell in 45 nm technology. Wireless Personal Communications, 71(1), 123–136.
Kao, J., & Chandrakasan, A. (2000). Dual-threshold voltage techniques for low-power digital circuits. IEEE Journal of Solid-State Circuits, 35(7), 1009–1018.
Yeap, G. (1998). Practical low power digital VLSI design. Boston, MA: Kluwer Academic Publishers.
Roy, K., & Prasad, S. (2000). Low-power CMOS VLSI circuit design. New York: Wiley.
Atsumi, S., Umezawa, A., Tanzawa, T., Taura, T., Shiga, H., Takano, Y., et al. (2000). A channel-erasing 1.8-V-only 32-Mb NOR flash EEPROM with a bitline direct sensing scheme. IEEE Journal of Solid-State Circuits, 35(11), 1648–1654.
Sakurai, T., & Newton, A. (1990). Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas. IEEE Journal of Solid-State Circuits, 25(2), 584–594.
Liu, D., & Svensson, C. (1993). Trading speed for low power by choice of supply and threshold voltages. IEEE Journal of Solid-State Circuits, 28(1), 10–17.
Lee, D., Jun, Y., & Kong, B. (2011). Simultaneous reverse body and negative word-line biasing control scheme for leakage reduction of DRAM. IEEE Journal of Solid-State Circuits, 46(10), 2396–2405.
Baker, R., Li, H., & Boyce, D. (1998). CMOS circuit design, layout, and simulation. New York: IEEE Press.
Streetman, B. (1980). Solid state electronic devices. Englewood Cliffs, NJ: Prentice-Hall.
Tsividis, Y. (1987). Operation and modeling of the MOS transistor. New York: McGraw-Hill.
Priya, M., Baskaran, K., & Krishnaveni, D. (2012). Leakage power reduction techniques in deep submicron technologies for VLSI applications. Procedia Engineering, 30, 1163–1170.
Paliouras, V., Vounckx, J., & Verkest, D. (2005). Integrated circuit and system design. Berlin: Springer.
Abdollahi, A., Fallah, F., & Pedram, M. (2004). Leakage current reduction in CMOS VLSI circuits by input vector control. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(2), 140–154.
Johnson, M., Somasekhar, D., Chiou, L.-Y., & Roy, K. (2002). Leakage control with efficient use of transistor stacks in single threshold CMOS. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 10(1), 1–5.
Weste, N., Harris, D., & Weste, N. (2005). CMOS VLSI design. Boston: Pearson/Addison-Wesley.
Chua, L. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.
Chua, L., & Kang, S. M. (1976). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209–223.
Sarwar, S., Saqueb, S., Quaiyum, F., & Rashid, A. (2013). Memristor-based nonvolatile random access memory: Hybrid architecture for low power compact memory design. IEEE Access, 1, 29–34.
Hamdioui, S., Taouil, M., & Haron, N. (2015). Testing open defects in memristor-based memories. IEEE Transactions on Computers, 64(1), 247–259.
Zhao, W., Portal, J., Kang, W., Moreau, M., Zhang, Y., Aziza, H., et al. (2014). Design and analysis of crossbar architecture based on complementary resistive switching non-volatile memory cells. Journal of Parallel and Distributed Computing, 74(6), 2484–2496.
Cho, K., Lee, S., & Eshraghian, K. (2015). Memristor-CMOS logic and digital computational components. Microelectronics Journal, 46(3), 214–220.
Chua, L. (2012). The fourth element. Proceedings of the IEEE, 100(6), 1920–1927.
Prodromakis, T., Toumazou, C., & Chua, L. (2012). Two centuries of memristors. Nature Materials, 11(6), 478–481.
Borghetti, J., Snider, G., Kuekes, P., Yang, J., Stewart, D., & Williams, R. (2010). ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature, 464(7290), 873–876.
Biolek, D., Biolek, Z., Biolkova, V., & Kolka, Z. (2013). Some fingerprints of ideal memristors. In 2013 IEEE international symposium on circuits and systems (ISCAS2013).
Abdoli, B., Amirsoleimani, A., Shamsi, J., Mohammadi, K., & Ahmadi, A. (2014). A novel CMOS-memristor based inverter circuit design. In 2014 22nd Iranian conference on electrical engineering (ICEE).
Kvatinsky, S., Satat, G., Wald, N., Friedman, E., Kolodny, A., & Weiser, U. (2014). Memristor-based material implication (IMPLY) logic: Design principles and methodologies. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 22(10), 2054–2066.
Williams, R. (2008). How we found the missing memristor. IEEE Spectrum, 45(12), 28–35.
Radwan, A., & Fouda, M. (2015). On the mathematical modeling of memristor, memcapacitor, and meminductor. Studies in Systems, Decision and Control (Vol. 26, pp. 1–231). Springer.
Strukov, D., Snider, G., Stewart, D., & Williams, R. (2008). The missing memristor found. Nature, 453(7191), 80–83.
Adhikari, S., Sah, M., Kim, H., & Chua, L. (2013). Three fingerprints of memristor. IEEE Transactions on Circuits and Systems I, 60(11), 3008–3021.
Mutlu, R., & Karakulak, E. (2014). A methodology for memristance calculation. Turkish Journal of Electrical Engineering & Computer Sciences, 22, 121–131.
Halawani, Y., Mohammad, B., Homouz, D., Al-Qutayri, M., & Saleh, H. (2016). Modeling and optimization of memristor and STT-RAM-based memory for low-power applications. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 24(3), 1003–1014.
Cavin, R., Lugli, P., & Zhirnov, V. (2012). Science and engineering beyond moore’s law. In Proceedings of the IEEE (Vol. 100, pp. 1720–1749).
Linn, E., Rosezin, R., Tappertzhofen, S., Bottger, U., & Waser, R. (2012). Beyond von Neumann-logic operations in passive crossbar arrays alongside memory operations. Nanotechnology, 23(30), 305205.
Ho, Y., Huang, G., & Li, P. (2011). Dynamical properties and design analysis for nonvolatile memristor memories. IEEE Transactions on Circuits and Systems I, 58(4), 724–736.
Ibrayev, T., Fedorova, I., Maan, A., & James, A. (2014). On design of memristive amplifier circuits. Circuits and Systems, 5(11), 265–273.
Eshraghian, K., Cho, K., Kavehei, O., Kang, S., Abbott, D., & Kang, S. (2011). Memristor MOS content addressable memory (MCAM): Hybrid architecture for future high performance search engines. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 19(8), 1407–1417.
Ho, Y., Huang, G., & Li, P. (2009). Nonvolatile memristor memory. In Proceedings of the 2009 international conference on computer-aided design—ICCAD ‘09.
Wei, W., Namba, K., & Lombardi, F. (2013). Extending non-volatile operation to DRAM cells. IEEE Access, 1, 758–769.
Mohammad, B., Homouz, D., Rayahi, O., Elgabra, H., & Hosani, A. (2011). Hybrid memristor-CMOS memory cell: Modeling and design. In ICM 2011 Proceeding.
Homouz, D., Mohammad, B., Elgabra, H., & Farahat, I. (2011). Memristor: Modeling read and write operations. In ICM 2011 Proceeding.
Acknowledgement
The authors of this paper owe gratitude to ITM University Gwalior in Collaboration with Cadence Design System Bangalore for the support provided.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Musiiwa, P.B., Akashe, S. Holding State Performance Amelioration by Exploitation of NMOS Body Effect in 1T DRAM Cells. Wireless Pers Commun 99, 47–66 (2018). https://doi.org/10.1007/s11277-017-5036-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-017-5036-z