Abstract
Precision agriculture (PA) is an interdisciplinary concept of integrating information technology in agriculture to increase the production and quality of the crops. One of the most important and interesting information of technology is Wireless Sensor Network (WSN). This technology is used to collect, monitor and analyse the data from the field of agriculture. This interdisciplinary technology will boost the crop productivity and maintain quality for example, monitoring the pest and disease control, animal tracking and strength of the crop. In this paper, we have surveyed the importance of sensor in PA and the importance of WSN technologies for remote monitoring in the various applications of the agriculture field.
Similar content being viewed by others
References
Aleisa, E. (2013). Wireless sensor networks framework for water resource management that supports QoS in the Kingdom of Saudi Arabia. Procedia Computer Science, 19, 232–239.
Ananda Kumar, S., & Ilango, P. (2014). Low-power and cost effective sensor network for efficient water resource management practices—A case study. International Journal of Applied Engineering Research, 9(23), 22887–22897.
Anisi, M. H., Abdul-salaam, G., & Abdullah, A. H. (2015). A survey of wireless sensor network approaches farm fields in precision agriculture. Precision Agriculture, 16, 216–238.
Aqeel-Ur-Rehman, Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards and Interfaces, 36(2), 263–270.
Ayday, C., & Safak, S. (2009, January). Application of wireless sensor networks with GIS on the soil moisture distribution mapping. In Symposium GIS Ostrava (pp. 1–6).
Berntsen, J., Thomsen, A., Schelde, K., Hansen, O. M., Knudsen, L., Broge, N., et al. (2006). Algorithms for sensor-based redistribution of nitrogen fertilizer in winter wheat. Precision Agriculture, 7(2), 65–83.
Christodoulou, S. E., Gagatsis, A., Xanthos, S., Kranioti, S., Agathokleous, A., & Fragiadakis, M. (2013). Entropy-based sensor placement optimization for waterloss detection in water distribution networks. Water Resources Management, 27, 4443–4468.
Dammer, K., & Ehlert, D. (2006). Variable-rate fungicide spraying in cereals using a plant cover sensor. Precision Agriculture, 7, 137–148.
Dammer, K., & Tho, H. (2009). Variable-rate fungicide spraying in real time by combining a plant cover sensor and a decision support system. Precision Agriculture, 10, 431–442.
Draganova, I., Yule, I., Stevenson, M., & Betteridge, K. (2016). The effects of temporal and environmental factors on the urination behaviour of dairy cows using tracking and sensor technologies. Precision Agriculture, 17(4), 407–420.
Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., & Nehra, K. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11–23.
Ehlert, D., Hammen, V., & Adamek, R. (2003). On-line sensor pendulum-meter for determination of plant mass. Precision Agriculture, 4(2), 139–148.
Ehlert, D., Schmerler, J., & Voelker, U. (2004). Variable rate nitrogen fertilisation of winter wheat based on a crop density sensor. Precision Agriculture, 5(3), 263–273.
El-kader, S. M. A., & El-basioni, B. M. M. (2013). Precision farming solution in Egypt using the wireless sensor network technology. Egyptian Informatics Journal, 14(3), 221–233.
Garcia-sanchez, F., & Garcia-haro, J. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288–303.
Hanquet, B., Sirjacobs, D., Destain, M.-F., Frankinet, M., & Verbrugge, J.-C. (2004). Analysis of soil variability measured with a soil strength sensor. Precision Agriculture, 5(3), 227–246.
Hedley, C., Ekanayake, J., & Roudier, P. (2012). Wireless soil moisture sensor networks for precision irrigation scheduling. In Workshop abstracts, advanced nutrient management: Gains from the past-goals for the future (p. 85).
Jørgensen, J. R., & Jørgensen, R. N. (2007). Uniformity of wheat yield and quality using sensor assisted application of nitrogen. Precision Agriculture, 8, 63–73.
Lin, M., Wu, Y., & Wassell, I. (2008, January). Wireless sensor network: Water distribution monitoring system. In Radio and Wireless Symposium, 2008 IEEE (pp. 775–778). IEEE.
Liqiang, Z., Shouyi, Y., Leibo, L., Zhen, Z., & Shaojun, W. (2011). Procedia environmental sciences a crop monitoring system based on wireless sensor network. Procedia Environmental Sciences, 11, 558–565.
Long, D. S., & Mccallum, J. D. (2015). On-combine, multi-sensor data collection for post-harvest assessment of environmental stress in wheat. Precision Agriculture, 16(5), 492–504.
Majone, B., Viani, F., Filippi, E., Bellin, A., Massa, A., Toller, G., et al. (2013). Wireless sensor network deployment for monitoring soil moisture dynamics at the field scale. Procedia Environmental Sciences, 19, 426–435.
Ojha, T., Misra, S., & Singh, N. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, 118, 66–84.
Pérez-Ruiz, M., Agüera, J., Gil, J. A., & Slaughter, D. C. (2011). Optimization of agrochemical application in olive groves based on positioning sensor. Precision Agriculture, 12(4), 564–575.
Pezzuolo, F. M. A., & Arvidsson, F. G. J. (2015). Application of the Kinect sensor for dynamic soil surface characterization. Precision Agriculture, 16(6), 601–612.
Rad, C., Hancu, O., & Takacs, I. (2015). Smart monitoring of potato crop : A cyber-physical system architecture model in the field of precision agriculture. Italian Oral Surgery, 6, 73–79.
Reyns, P., Missotten, B., Ramon, H., & De Baerdemaeker, J. (2002). A review of combine sensors for precision farming. Precision Agriculture, 3(2), 169–182.
Riquelme, J. A. L., Soto, F., Suardíaz, J., Sánchez, P., Iborra, A., & Vera, J. A. (2009). Wireless sensor networks for precision horticulture in Southern Spain. Computers and Electronics in Agriculture, 68(1), 25–35.
Roy, S., & Bandyopadhyay, S. (2013). A test-bed on real-time monitoring of agricultural parameters using wireless sensor networks for precision agriculture. In First international conference on intelligent infrastructure the 47th annual national convention at computer society of India CSI.
Roy, S. K., Shibusawa, S., & Okayama, T. (2006). Textural analysis of soil images to quantify and characterize the spatial variation of soil properties using a real-time soil sensor. Precision Agriculture, 7(6), 419–436.
Shah, N. & Das, I. (2012). Precision irrigation sensor network based irrigation (pp. 217–232). NTECH Open Access Publisher, India, ISBN: 1304633594.
Stamatiadis, S., Christofides, C., Tsadilas, C., Samaras, V., Schepers, J. S., & Francis, D. (2005). Ground-sensor soil reflectance as related to soil properties and crop response in a cotton field. Precision Agriculture, 6(4), 399–411.
Yue, R., & Ying, T. (2012). A novel water quality monitoring system based on solar power supply & wireless sensor network. Procedia Environmental Sciences, 12, 265–272.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kumar, S.A., Ilango, P. The Impact of Wireless Sensor Network in the Field of Precision Agriculture: A Review. Wireless Pers Commun 98, 685–698 (2018). https://doi.org/10.1007/s11277-017-4890-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-017-4890-z