[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

The Impact of Wireless Sensor Network in the Field of Precision Agriculture: A Review

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Precision agriculture (PA) is an interdisciplinary concept of integrating information technology in agriculture to increase the production and quality of the crops. One of the most important and interesting information of technology is Wireless Sensor Network (WSN). This technology is used to collect, monitor and analyse the data from the field of agriculture. This interdisciplinary technology will boost the crop productivity and maintain quality for example, monitoring the pest and disease control, animal tracking and strength of the crop. In this paper, we have surveyed the importance of sensor in PA and the importance of WSN technologies for remote monitoring in the various applications of the agriculture field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aleisa, E. (2013). Wireless sensor networks framework for water resource management that supports QoS in the Kingdom of Saudi Arabia. Procedia Computer Science, 19, 232–239.

    Article  Google Scholar 

  2. Ananda Kumar, S., & Ilango, P. (2014). Low-power and cost effective sensor network for efficient water resource management practices—A case study. International Journal of Applied Engineering Research, 9(23), 22887–22897.

    Google Scholar 

  3. Anisi, M. H., Abdul-salaam, G., & Abdullah, A. H. (2015). A survey of wireless sensor network approaches farm fields in precision agriculture. Precision Agriculture, 16, 216–238.

    Article  Google Scholar 

  4. Aqeel-Ur-Rehman, Abbasi, A. Z., Islam, N., & Shaikh, Z. A. (2014). A review of wireless sensors and networks’ applications in agriculture. Computer Standards and Interfaces, 36(2), 263–270.

    Article  Google Scholar 

  5. Ayday, C., & Safak, S. (2009, January). Application of wireless sensor networks with GIS on the soil moisture distribution mapping. In Symposium GIS Ostrava (pp. 1–6).

  6. Berntsen, J., Thomsen, A., Schelde, K., Hansen, O. M., Knudsen, L., Broge, N., et al. (2006). Algorithms for sensor-based redistribution of nitrogen fertilizer in winter wheat. Precision Agriculture, 7(2), 65–83.

    Article  Google Scholar 

  7. Christodoulou, S. E., Gagatsis, A., Xanthos, S., Kranioti, S., Agathokleous, A., & Fragiadakis, M. (2013). Entropy-based sensor placement optimization for waterloss detection in water distribution networks. Water Resources Management, 27, 4443–4468.

    Article  Google Scholar 

  8. Dammer, K., & Ehlert, D. (2006). Variable-rate fungicide spraying in cereals using a plant cover sensor. Precision Agriculture, 7, 137–148.

    Article  Google Scholar 

  9. Dammer, K., & Tho, H. (2009). Variable-rate fungicide spraying in real time by combining a plant cover sensor and a decision support system. Precision Agriculture, 10, 431–442.

    Article  Google Scholar 

  10. Draganova, I., Yule, I., Stevenson, M., & Betteridge, K. (2016). The effects of temporal and environmental factors on the urination behaviour of dairy cows using tracking and sensor technologies. Precision Agriculture, 17(4), 407–420.

  11. Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., & Nehra, K. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11–23.

    Article  Google Scholar 

  12. Ehlert, D., Hammen, V., & Adamek, R. (2003). On-line sensor pendulum-meter for determination of plant mass. Precision Agriculture, 4(2), 139–148.

    Article  Google Scholar 

  13. Ehlert, D., Schmerler, J., & Voelker, U. (2004). Variable rate nitrogen fertilisation of winter wheat based on a crop density sensor. Precision Agriculture, 5(3), 263–273.

    Article  Google Scholar 

  14. El-kader, S. M. A., & El-basioni, B. M. M. (2013). Precision farming solution in Egypt using the wireless sensor network technology. Egyptian Informatics Journal, 14(3), 221–233.

    Article  Google Scholar 

  15. Garcia-sanchez, F., & Garcia-haro, J. (2011). Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture, 75(2), 288–303.

    Article  Google Scholar 

  16. Hanquet, B., Sirjacobs, D., Destain, M.-F., Frankinet, M., & Verbrugge, J.-C. (2004). Analysis of soil variability measured with a soil strength sensor. Precision Agriculture, 5(3), 227–246.

    Article  Google Scholar 

  17. Hedley, C., Ekanayake, J., & Roudier, P. (2012). Wireless soil moisture sensor networks for precision irrigation scheduling. In Workshop abstracts, advanced nutrient management: Gains from the past-goals for the future (p. 85).

  18. Jørgensen, J. R., & Jørgensen, R. N. (2007). Uniformity of wheat yield and quality using sensor assisted application of nitrogen. Precision Agriculture, 8, 63–73.

    Article  Google Scholar 

  19. Lin, M., Wu, Y., & Wassell, I. (2008, January). Wireless sensor network: Water distribution monitoring system. In Radio and Wireless Symposium, 2008 IEEE (pp. 775–778). IEEE.

  20. Liqiang, Z., Shouyi, Y., Leibo, L., Zhen, Z., & Shaojun, W. (2011). Procedia environmental sciences a crop monitoring system based on wireless sensor network. Procedia Environmental Sciences, 11, 558–565.

    Article  Google Scholar 

  21. Long, D. S., & Mccallum, J. D. (2015). On-combine, multi-sensor data collection for post-harvest assessment of environmental stress in wheat. Precision Agriculture, 16(5), 492–504.

    Article  Google Scholar 

  22. Majone, B., Viani, F., Filippi, E., Bellin, A., Massa, A., Toller, G., et al. (2013). Wireless sensor network deployment for monitoring soil moisture dynamics at the field scale. Procedia Environmental Sciences, 19, 426–435.

    Article  Google Scholar 

  23. Ojha, T., Misra, S., & Singh, N. (2015). Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture, 118, 66–84.

    Article  Google Scholar 

  24. Pérez-Ruiz, M., Agüera, J., Gil, J. A., & Slaughter, D. C. (2011). Optimization of agrochemical application in olive groves based on positioning sensor. Precision Agriculture, 12(4), 564–575.

  25. Pezzuolo, F. M. A., & Arvidsson, F. G. J. (2015). Application of the Kinect sensor for dynamic soil surface characterization. Precision Agriculture, 16(6), 601–612.

    Article  Google Scholar 

  26. Rad, C., Hancu, O., & Takacs, I. (2015). Smart monitoring of potato crop : A cyber-physical system architecture model in the field of precision agriculture. Italian Oral Surgery, 6, 73–79.

    Google Scholar 

  27. Reyns, P., Missotten, B., Ramon, H., & De Baerdemaeker, J. (2002). A review of combine sensors for precision farming. Precision Agriculture, 3(2), 169–182.

    Article  Google Scholar 

  28. Riquelme, J. A. L., Soto, F., Suardíaz, J., Sánchez, P., Iborra, A., & Vera, J. A. (2009). Wireless sensor networks for precision horticulture in Southern Spain. Computers and Electronics in Agriculture, 68(1), 25–35.

    Article  Google Scholar 

  29. Roy, S., & Bandyopadhyay, S. (2013). A test-bed on real-time monitoring of agricultural parameters using wireless sensor networks for precision agriculture. In First international conference on intelligent infrastructure the 47th annual national convention at computer society of India CSI.

  30. Roy, S. K., Shibusawa, S., & Okayama, T. (2006). Textural analysis of soil images to quantify and characterize the spatial variation of soil properties using a real-time soil sensor. Precision Agriculture, 7(6), 419–436.

  31. Shah, N. & Das, I. (2012). Precision irrigation sensor network based irrigation (pp. 217–232). NTECH Open Access Publisher, India, ISBN: 1304633594.

  32. Stamatiadis, S., Christofides, C., Tsadilas, C., Samaras, V., Schepers, J. S., & Francis, D. (2005). Ground-sensor soil reflectance as related to soil properties and crop response in a cotton field. Precision Agriculture, 6(4), 399–411.

    Article  Google Scholar 

  33. Yue, R., & Ying, T. (2012). A novel water quality monitoring system based on solar power supply & wireless sensor network. Procedia Environmental Sciences, 12, 265–272.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramania Ananda Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.A., Ilango, P. The Impact of Wireless Sensor Network in the Field of Precision Agriculture: A Review. Wireless Pers Commun 98, 685–698 (2018). https://doi.org/10.1007/s11277-017-4890-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4890-z

Keywords

Navigation