[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

RFID Authentication Protocols Based on Error-Correcting Codes: A Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Code-based cryptography is a very promising research area. It allows the construction of different cryptographic mechanisms (e.g. identification protocol, public-key cryptosystem, etc.). McEliece cryptosystem is the first code-based public-key cryptosystem; several variants of this cryptosystem were proposed to design various security protocols in different systems. In this paper, we present a survey on various and recent authentication protocols in radio frequency identification systems which use diverse variants of the McEliece cryptosystem. Moreover, we discuss the security and the performance of each presented protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Agudo, I., Ruben, R., & Lopez, J. (2013). A privacy-aware continuous authentication scheme for proximity-based access control. Computers & Security, 39, 117–126.

    Article  Google Scholar 

  2. Alavi, S. M., Baghery, K., Abdolmaleki, B., & Aref, M. R. (2015). Traceability analysis of recent RFID authentication protocols. Wireless Personal Communications, 83(3), 1663–1682.

    Article  Google Scholar 

  3. Alqarnia, A., Alabdulhafitha, M., & Sampalli, S. (2014). A proposed RFID authentication protocol based on two stages of authentication. In Proceedings of international workshop on privacy and security in healthcare (PSCare14), Procedia Computer Science (Vol. 37, pp. 503–510). Amsterdam: Elsevier B.V.

  4. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J., et al. (2005). The AVISPA tool for the automated validation of internet security protocols and applications. In International conference on computer aided verification, Lecture Notes in Computer Science (Vol. 3576, pp. 281–285). Berlin: Springer.

  5. Berson, T. A. (1997). Failure of the McEliece public-key cryptosystem under message-resend and related-message attack. In Advances in cryptology—CRYPTO ’97, Lecture Notes in Computer Science (Vol. 1294, pp. 213–220). Berlin: Springer.

  6. Blanchet, B. (2012). Security protocol verification: Symbolic and computational models. In Principles of security and trust post 2012, Lecture Notes in Computer Science (Vol. 7215, pp. 3–29). Berlin: Springer.

  7. Cayrel, P. L., Gueye, C. T., Ndiaye, O., & Niebuhr, R. (2015). Critical attacks in code-based cryptography. International Journal of Information and Coding Theory, 3(2), 158–176.

    Article  MathSciNet  MATH  Google Scholar 

  8. Cayrel, P.L., Hoffmann, G., & Persichetti, E. (2012). Efficient implementation of a CCA2-secure variant of McEliece using generalized Srivastava codes. In Public key cryptography—PKC 2012, Lecture Notes in Computer Science (Vol. 7293, pp. 138–155). Berlin: Springer.

  9. Chen, L., Jordan, S., Liu, Y. K., Moody, D., Peralta, R., Perlner, R., et al. (2016). Report on post-quantum cryptography. NISTIR8105. DRAFT.

  10. Chen, C. M., Chen, S. M., Zheng, X., Chen, P. Y., & Sun, H. M. (2014). A secure RFID authentication protocol adopting error correction code. The Scientific World Journal. doi:10.1155/2014/704623.

    Google Scholar 

  11. Chien, H. Y. (2013). Combining Rabin cryptosystem and error correction codes to facilitate anonymous authentication with un-traceability for low-end devices. Computer Networks, 57, 2705–2717.

    Article  Google Scholar 

  12. Chikouche, N., Cherif, F., Cayrel, P. L., & Benmohammed, M. (2015). Improved RFID authentication protocol based on randomized McEliece cryptosystem. International Journal of Network Security, 17(4), 413–422.

    MATH  Google Scholar 

  13. Chikouche, N., Cherif, F., Cayrel, P. L., & Benmohammed, M. (2015). A secure code-based authentication scheme for RFID systems. IJ Computer Network and Information Security, 7(9), 1–9.

    Article  MATH  Google Scholar 

  14. Dehkordi, M. H., & Farzaneh, Y. (2014). Improvement of the hash-based RFID mutual authentication protocol. Wireless Personal Communications, 75(1), 219–232.

    Article  Google Scholar 

  15. Erguler, I. (2014). A key recovery attack on error correcting code based a lightweight security protocol. IACR Cryptology. ePrint Archive 475. http://eprint.iacr.org/2014/475

  16. Farash, M. S., Nawaz, O., Mahmood, K., Chaudhry, S. A., & Khan, M. K. (2016). A provably secure RFID authentication protocol based on elliptic curve for healthcare environments. Journal of Medical Systems, 40(7), 165.

    Article  Google Scholar 

  17. He, D., Kumar, N., Chilamkurti, N., & Lee, J. H. (2014). Lightweight ECC based RFID authentication integrated with an ID verifier transfer protocol. Journal of Medical Systems, 38(10), 116.

    Article  Google Scholar 

  18. Heiman, R. (1987). On the security of cryptosystems based on linear error-correcting codes. Master’s Thesis, Feinberg Graduate School of the Weizman Institute of Science.

  19. Huang, P., Mu, H., & Zhang, C. (2014). A new lightweight RFID grouping proof protocol. In Advanced technologies, embedded and multimedia for human-centric computing: HumanCom and EMC 2013, Lecture Notes in Electrical Engineering (Vol. 260, pp. 869–876). Berlin: Springer.

  20. Kaul, S. D., & Awasthi, A. K. (2013). RFID authentication protocol to enhance patient medication safety. Journal of Medical Systems, 37(6), 9979.

    Article  Google Scholar 

  21. Kobara, K., & Imai, H. (2001). Semantically secure McEliece public-key cryptosystems—conversions for mceliece PKC. In Public key cryptography, PKC 2001, Lecture Notes in Computer Science (Vol. 1992, pp. 19–35). Berlin: Springer.

  22. Kobara, K., & Imai, H. (2006). Personalized-public-key cryptosystem(P2KC)-application where public-key size of Niederreiter PKC can be reduced. In Workshop on codes and lattices in cryptography (CLC2006) (pp. 61–68)

  23. Kumar, A., Gopal, K., & Alok, A. (2015). A novel trusted hierarchy construction for RFID-sensor based MANETs using ECC. ETRI Journal, 37(1), 186–196.

    Article  Google Scholar 

  24. Lee, K. (2013). Privacy of RFID models and protocols. PhD Thesis, Queensland University of Technology, Brisbane, Australia.

  25. Li, Z., Zhang, R., Yang, Y., & Li, Z. (2014). A provable secure mutual RFID authentication protocol based on error-correct code. In Proceedings of 2014 international conference on cyber-enabled distributed computing and knowledge discovery (pp. 73–78). IEEE.

  26. Liu, Z., Zhang, W., & Wu, C. (2015). A lightweight code-based authentication protocol for RFID systems. In Applications and Techniques in Information Security, ATIS 2015

  27. Malek, B., & Miri, A. (2012). Lightweight mutual RFID authentication. In Proceedings of IEEE international conference on communications (pp. 868–872). IEEE.

  28. McEliece, R. J. (1978). A public-key system based on algebraic coding theory. Tech. Rep. DSN Progress Report 44, Jet Propulsion Lab.

  29. Misoczki, R., & Barreto, P. S. L. M. (2009). Compact McEliece keys from goppa codes. InSelected areas in cryptography, SAC 2009, Lecture Notes in Computer Science (Vol. 5867, pp. 376–392). Berlin: Springer.

  30. Misoczki, R., Tillich, J. P., Sendrier, N., & Barreto, P. S. L. M. (2013). MDPC-McEliece: New McEliece variants from moderate density parity-check codes. In Proceedings of IEEE international symposium on information theory (ISIT) (pp. 2069–2073). IEEE.

  31. Niederreiter, H. (1986). Knapsack-type cryptosystems and algebraic coding theory. Problems Control Information Theory, 15(2), 159–166.

    MathSciNet  MATH  Google Scholar 

  32. Nojima, R., Imai, H., Kobara, K., & Morozov, K. (2008). Semantic security for the McEliece cryptosystem without random oracles. Designs, Codes and Cryptography, 49(1), 289–305.

    Article  MathSciNet  MATH  Google Scholar 

  33. Noor-ul Ain, W., Atta-ur Rahman, M., Nadeem, M., & Abbasi, A. G. (2016). Quantum cryptography trends: A milestone in information security. In Advances in intelligent systems and computing (Vol. 420, pp. 25–39). Berlin: Springer.

  34. Ouafi, K., & Phan, R. C. W. (2008). Privacy of recent RFID authentication protocols. In Information security practice and experience, ISPEC 2008, Lecture Notes in Computer Science (Vol. 4991, pp. 263–277). Berlin: Springer.

  35. Pham, T., Hasan, M., & Yu, H. (2012). A RFID mutual authentication protocol based on AES algorithm. In UKACC international conference on control (CONTROL 2012) (pp. 997–1002). IEEE.

  36. Ranasinghe, D. C., & Cole, P. H. (2008). An evaluation framework (pp. 157–167). Berlin: Springer.

    Google Scholar 

  37. Sekino, T., Cui, Y., Kobara, K., & Imai, H. (2010). Privacy enhanced RFID using quasi-dyadic fix domain shrinking. In Proceedings of global telecommunications conference (GLOBECOM 2010) (pp. 1–5). IEEE.

  38. Vaudenay, S. (2010). Privacy models for rfid schemes. In Radio frequency identification: Security and privacy issues, RFIDSec 2010, Lecture Notes in Computer Science (Vol. 6370, pp. 65–65). Berlin: Springer.

  39. Wang, J., Floerkemeier, C., & Sarma, S. E. (2014). Session-based security enhancement of RFID systems for emerging open-loop applications. Personal and Ubiquitous Computing, 18(8), 1881–1891.

    Article  Google Scholar 

  40. Wang, S., Liu, S., & Chen, D. (2015). Security analysis and improvement on two RFID authentication protocols. Wireless Personal Communications, 82(1), 21–33.

    Article  Google Scholar 

  41. Woo-Sik, B. (2014). Formal verification of an RFID authentication protocol based on hash function and secret code. Wireless Personal Communications, 79(4), 2595–2609.

    Article  Google Scholar 

  42. Xin, H., Pin, Y., & Kun, L. (2014). NTRU-based RFID tripartite authentication protocol. Computer Engineering Applications, 50(3), 63–66.

    Google Scholar 

  43. Zhuang, X., Zhu, Y., & Chang, C. C. (2014). A new ultralightweight RFID protocol for low-cost tags: \({\text{R}}^{2}{\text{AP}}\). Wireless Personal Communications, 79(3), 1787–1802.

    Article  Google Scholar 

  44. van Deursen, T., Mauw, S., & Radomirović, S. (2008). Untraceability of RFID protocols. In: Information security theory and practices. Smart devices, convergence and next generation networks, WISTP 2008, Lecture Notes in Computer Science (Vol. 5019, pp. 1–15). Berlin: Springer.

  45. von Maurich, I., & Güneysu, T. (2014). Lightweight code-based cryptography: QC-MDPC McEliece encryption on reconfigurable devices. In Proceedings of the conference on design, automation & test in Europe (DATE’14) (pp. 1–6)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noureddine Chikouche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikouche, N., Cherif, F., Cayrel, PL. et al. RFID Authentication Protocols Based on Error-Correcting Codes: A Survey. Wireless Pers Commun 96, 509–527 (2017). https://doi.org/10.1007/s11277-017-4181-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4181-8

Keywords

Navigation