Abstract
Code-based cryptography is a very promising research area. It allows the construction of different cryptographic mechanisms (e.g. identification protocol, public-key cryptosystem, etc.). McEliece cryptosystem is the first code-based public-key cryptosystem; several variants of this cryptosystem were proposed to design various security protocols in different systems. In this paper, we present a survey on various and recent authentication protocols in radio frequency identification systems which use diverse variants of the McEliece cryptosystem. Moreover, we discuss the security and the performance of each presented protocol.
Similar content being viewed by others
References
Agudo, I., Ruben, R., & Lopez, J. (2013). A privacy-aware continuous authentication scheme for proximity-based access control. Computers & Security, 39, 117–126.
Alavi, S. M., Baghery, K., Abdolmaleki, B., & Aref, M. R. (2015). Traceability analysis of recent RFID authentication protocols. Wireless Personal Communications, 83(3), 1663–1682.
Alqarnia, A., Alabdulhafitha, M., & Sampalli, S. (2014). A proposed RFID authentication protocol based on two stages of authentication. In Proceedings of international workshop on privacy and security in healthcare (PSCare14), Procedia Computer Science (Vol. 37, pp. 503–510). Amsterdam: Elsevier B.V.
Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J., et al. (2005). The AVISPA tool for the automated validation of internet security protocols and applications. In International conference on computer aided verification, Lecture Notes in Computer Science (Vol. 3576, pp. 281–285). Berlin: Springer.
Berson, T. A. (1997). Failure of the McEliece public-key cryptosystem under message-resend and related-message attack. In Advances in cryptology—CRYPTO ’97, Lecture Notes in Computer Science (Vol. 1294, pp. 213–220). Berlin: Springer.
Blanchet, B. (2012). Security protocol verification: Symbolic and computational models. In Principles of security and trust post 2012, Lecture Notes in Computer Science (Vol. 7215, pp. 3–29). Berlin: Springer.
Cayrel, P. L., Gueye, C. T., Ndiaye, O., & Niebuhr, R. (2015). Critical attacks in code-based cryptography. International Journal of Information and Coding Theory, 3(2), 158–176.
Cayrel, P.L., Hoffmann, G., & Persichetti, E. (2012). Efficient implementation of a CCA2-secure variant of McEliece using generalized Srivastava codes. In Public key cryptography—PKC 2012, Lecture Notes in Computer Science (Vol. 7293, pp. 138–155). Berlin: Springer.
Chen, L., Jordan, S., Liu, Y. K., Moody, D., Peralta, R., Perlner, R., et al. (2016). Report on post-quantum cryptography. NISTIR8105. DRAFT.
Chen, C. M., Chen, S. M., Zheng, X., Chen, P. Y., & Sun, H. M. (2014). A secure RFID authentication protocol adopting error correction code. The Scientific World Journal. doi:10.1155/2014/704623.
Chien, H. Y. (2013). Combining Rabin cryptosystem and error correction codes to facilitate anonymous authentication with un-traceability for low-end devices. Computer Networks, 57, 2705–2717.
Chikouche, N., Cherif, F., Cayrel, P. L., & Benmohammed, M. (2015). Improved RFID authentication protocol based on randomized McEliece cryptosystem. International Journal of Network Security, 17(4), 413–422.
Chikouche, N., Cherif, F., Cayrel, P. L., & Benmohammed, M. (2015). A secure code-based authentication scheme for RFID systems. IJ Computer Network and Information Security, 7(9), 1–9.
Dehkordi, M. H., & Farzaneh, Y. (2014). Improvement of the hash-based RFID mutual authentication protocol. Wireless Personal Communications, 75(1), 219–232.
Erguler, I. (2014). A key recovery attack on error correcting code based a lightweight security protocol. IACR Cryptology. ePrint Archive 475. http://eprint.iacr.org/2014/475
Farash, M. S., Nawaz, O., Mahmood, K., Chaudhry, S. A., & Khan, M. K. (2016). A provably secure RFID authentication protocol based on elliptic curve for healthcare environments. Journal of Medical Systems, 40(7), 165.
He, D., Kumar, N., Chilamkurti, N., & Lee, J. H. (2014). Lightweight ECC based RFID authentication integrated with an ID verifier transfer protocol. Journal of Medical Systems, 38(10), 116.
Heiman, R. (1987). On the security of cryptosystems based on linear error-correcting codes. Master’s Thesis, Feinberg Graduate School of the Weizman Institute of Science.
Huang, P., Mu, H., & Zhang, C. (2014). A new lightweight RFID grouping proof protocol. In Advanced technologies, embedded and multimedia for human-centric computing: HumanCom and EMC 2013, Lecture Notes in Electrical Engineering (Vol. 260, pp. 869–876). Berlin: Springer.
Kaul, S. D., & Awasthi, A. K. (2013). RFID authentication protocol to enhance patient medication safety. Journal of Medical Systems, 37(6), 9979.
Kobara, K., & Imai, H. (2001). Semantically secure McEliece public-key cryptosystems—conversions for mceliece PKC. In Public key cryptography, PKC 2001, Lecture Notes in Computer Science (Vol. 1992, pp. 19–35). Berlin: Springer.
Kobara, K., & Imai, H. (2006). Personalized-public-key cryptosystem(P2KC)-application where public-key size of Niederreiter PKC can be reduced. In Workshop on codes and lattices in cryptography (CLC2006) (pp. 61–68)
Kumar, A., Gopal, K., & Alok, A. (2015). A novel trusted hierarchy construction for RFID-sensor based MANETs using ECC. ETRI Journal, 37(1), 186–196.
Lee, K. (2013). Privacy of RFID models and protocols. PhD Thesis, Queensland University of Technology, Brisbane, Australia.
Li, Z., Zhang, R., Yang, Y., & Li, Z. (2014). A provable secure mutual RFID authentication protocol based on error-correct code. In Proceedings of 2014 international conference on cyber-enabled distributed computing and knowledge discovery (pp. 73–78). IEEE.
Liu, Z., Zhang, W., & Wu, C. (2015). A lightweight code-based authentication protocol for RFID systems. In Applications and Techniques in Information Security, ATIS 2015
Malek, B., & Miri, A. (2012). Lightweight mutual RFID authentication. In Proceedings of IEEE international conference on communications (pp. 868–872). IEEE.
McEliece, R. J. (1978). A public-key system based on algebraic coding theory. Tech. Rep. DSN Progress Report 44, Jet Propulsion Lab.
Misoczki, R., & Barreto, P. S. L. M. (2009). Compact McEliece keys from goppa codes. InSelected areas in cryptography, SAC 2009, Lecture Notes in Computer Science (Vol. 5867, pp. 376–392). Berlin: Springer.
Misoczki, R., Tillich, J. P., Sendrier, N., & Barreto, P. S. L. M. (2013). MDPC-McEliece: New McEliece variants from moderate density parity-check codes. In Proceedings of IEEE international symposium on information theory (ISIT) (pp. 2069–2073). IEEE.
Niederreiter, H. (1986). Knapsack-type cryptosystems and algebraic coding theory. Problems Control Information Theory, 15(2), 159–166.
Nojima, R., Imai, H., Kobara, K., & Morozov, K. (2008). Semantic security for the McEliece cryptosystem without random oracles. Designs, Codes and Cryptography, 49(1), 289–305.
Noor-ul Ain, W., Atta-ur Rahman, M., Nadeem, M., & Abbasi, A. G. (2016). Quantum cryptography trends: A milestone in information security. In Advances in intelligent systems and computing (Vol. 420, pp. 25–39). Berlin: Springer.
Ouafi, K., & Phan, R. C. W. (2008). Privacy of recent RFID authentication protocols. In Information security practice and experience, ISPEC 2008, Lecture Notes in Computer Science (Vol. 4991, pp. 263–277). Berlin: Springer.
Pham, T., Hasan, M., & Yu, H. (2012). A RFID mutual authentication protocol based on AES algorithm. In UKACC international conference on control (CONTROL 2012) (pp. 997–1002). IEEE.
Ranasinghe, D. C., & Cole, P. H. (2008). An evaluation framework (pp. 157–167). Berlin: Springer.
Sekino, T., Cui, Y., Kobara, K., & Imai, H. (2010). Privacy enhanced RFID using quasi-dyadic fix domain shrinking. In Proceedings of global telecommunications conference (GLOBECOM 2010) (pp. 1–5). IEEE.
Vaudenay, S. (2010). Privacy models for rfid schemes. In Radio frequency identification: Security and privacy issues, RFIDSec 2010, Lecture Notes in Computer Science (Vol. 6370, pp. 65–65). Berlin: Springer.
Wang, J., Floerkemeier, C., & Sarma, S. E. (2014). Session-based security enhancement of RFID systems for emerging open-loop applications. Personal and Ubiquitous Computing, 18(8), 1881–1891.
Wang, S., Liu, S., & Chen, D. (2015). Security analysis and improvement on two RFID authentication protocols. Wireless Personal Communications, 82(1), 21–33.
Woo-Sik, B. (2014). Formal verification of an RFID authentication protocol based on hash function and secret code. Wireless Personal Communications, 79(4), 2595–2609.
Xin, H., Pin, Y., & Kun, L. (2014). NTRU-based RFID tripartite authentication protocol. Computer Engineering Applications, 50(3), 63–66.
Zhuang, X., Zhu, Y., & Chang, C. C. (2014). A new ultralightweight RFID protocol for low-cost tags: \({\text{R}}^{2}{\text{AP}}\). Wireless Personal Communications, 79(3), 1787–1802.
van Deursen, T., Mauw, S., & Radomirović, S. (2008). Untraceability of RFID protocols. In: Information security theory and practices. Smart devices, convergence and next generation networks, WISTP 2008, Lecture Notes in Computer Science (Vol. 5019, pp. 1–15). Berlin: Springer.
von Maurich, I., & Güneysu, T. (2014). Lightweight code-based cryptography: QC-MDPC McEliece encryption on reconfigurable devices. In Proceedings of the conference on design, automation & test in Europe (DATE’14) (pp. 1–6)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chikouche, N., Cherif, F., Cayrel, PL. et al. RFID Authentication Protocols Based on Error-Correcting Codes: A Survey. Wireless Pers Commun 96, 509–527 (2017). https://doi.org/10.1007/s11277-017-4181-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-017-4181-8