[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Potentials for Application of Millimeter Wave Communications in Cellular Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Future 5G cellular networks will need to deliver significantly increased system capacity and user data rates. This expected growth along with today’s shortage of spectrum raises the need for new frequency allocations. Millimeter wave spectrum is emerging as a suitable candidate with a vast amount of available bandwidth (around 60 GHz). Extending cellular networks communications on millimeter wave frequencies requires extensive measurement campaigns and analysis of signals propagation characteristics. This paper gives an overview of recent measurement studies and results used for modeling millimeter wave channel behavior in different propagation environments. Also , the paper provides a preliminary simulation analysis of a hybrid LTE-millimeter wave heterogeneous network, which suggests that Gbps user data rates are achievable with sufficient beamforming gains. However, the millimeter wave cellular extensions will require architectural changes to address the technical issues spanning from the transceivers design to the operational procedures in both access and backhaul network parts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G. N., Schulz, J. K., Samimi, M., & Gutierrez, F. (2013). Millimeter wave mobile communications for 5G cellular: It will work!, IEEE Access, May.

  2. Faussurier, E. (2014). ANFR, Introduction of new spectrum sharing concepts: LSA and WSD, ITU-R SG 1/WP 1B Workshop: Spectrum management issues on the use of white spaces by cognitive radio systems, Geneva, Jan.

  3. Bai, T., Alkhateeb, A., & Heath, R. W, Jr. (2014). Coverage and capacity of millimeter-wave cellular networks. IEEE Communications Magazine, Sept

  4. Bai, T., & Heath, R. W, Jr. (2015). Coverage and rate analysis for millimeter wave cellular networks. IEEE Transactions on Wireless Communications, 14(2), 1100–1114.

    Article  Google Scholar 

  5. Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). State of the art in 60-GHz integrated circuits and systems for wireless communications. Proceedings of the IEEE, 99(8), 1390–1436.

    Article  Google Scholar 

  6. Baldemair, R., et al. (2015). Ultra-dense networks in millimeter-wave frequencies. IEEE Communications Magazine, 53(1), 202–208.

    Article  Google Scholar 

  7. Agilent Technologies, Wireless LAN at 60 GHz—IEEE 802.11ad Explained, May 2013. http://cp.literature.agilent.com/litweb/pdf/5990-9697EN.pdf.

  8. Baykas, T., et al. (2011). IEEE 802.15.3c: The first IEEE wireless standard for data rates over 1 Gb/s. IEEE Communications Magazine, 49(7), 114–121.

    Article  Google Scholar 

  9. ITU-R. Working document towards a preliminary draft new report ITU-R M [IMT above 6 GHz], Feb 2014.

  10. Recommendation ITU-R P.838-3, Specific attenuation model for rain for use in prediction methods, March 2005. https://www.itu.int/rec/R-REC-P.838/en.

  11. Adhikari, P. (2008). Understanding millimeter wave wireless communication. Hawaii: Loea Corporation.

    Google Scholar 

  12. Zhao, H., Mayzus, R., Sun, S., Samimi, M., Schulz, J. K., Azar, Y., Wang, K., Wong, G. N., Gutierrez, Jr., F., & Rappaport, T. S. (2013). 28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York City. In 2013 IEEE International Conference on Communications (ICC), June.

  13. MacCartney, G. R., Zhang, J., Nie, S., & Rappaport, R. (2013). Path loss models for 5G millimeter wave propagation channels in urban microcells. In IEEE Global Communications Conference, Exhibition & Industry Forum (GLOBECOM), Dec.

  14. Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056.

    Article  Google Scholar 

  15. Akdeniz, M. R., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.

    Article  Google Scholar 

  16. Sulyman, A. I., Nassar, A. T., Samimi, M. K., Maccartney, G. R., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHZ and 38 GHZ millimeter-wave bands. IEEE Communications Magazine, 52(9), 78–86.

    Article  Google Scholar 

  17. Sun, S. et al. (2016). Propagation path loss models for 5G urban micro- and macro-cellular scenarios, In 2016 IEEE 83rd Vehicular Technology Conference (VTC2016-Spring), May.

  18. Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.

    Article  Google Scholar 

  19. LTE: Evolved universal terrestrial radio access (E-UTRA): Radio resource control (RRC); Protocol specification (3GPP TS 36.331 version 9.12.0 Release 9)

  20. Di Renzo, M. (2015). Stochastic geometry modeling and analysis of multi-tier millimeter wave cellular networks. ieee transactions on wireless communications, 14(9), 5038–5057.

    Article  Google Scholar 

  21. Lei, W., & Renzo, M. (2015). Stochastic geometry modeling of cellular networks: Analysis, simulation and experimental validation. In MSWiM ’15 Proceedings of the 18th ACM international conference on modeling, analysis and simulation of wireless and mobile systems.

  22. Sun, S., Rappaport, T. S., Heath, R. W., Nix, A., & Rangan, S. (2014). MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? IEEE Communications Magazine, 52(12), 110–121.

    Article  Google Scholar 

  23. Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive MIMO: The next wireless revolution? IEEE Communications Magazine, 52(9), 56–62.

    Article  Google Scholar 

  24. Gao, Z., Dai, L., Mi, D., Wang, Z., Ali Imran, M., Shakir, M. Z. MmWave massive MIMO based wireless backhaul for 5G ultra-dense network, accepted by IEEE wireless communications magazine. http://arxiv.org/pdf/1508.03940v3.pdf.

  25. Singh, S., Kulkarni, M. N., Ghosh, A., Andrews, J. G. Tractable model for rate in self-backhauled millimeter wave cellular networks. http://arxiv.org/pdf/1407.5537v2.pdf

  26. Proposed Rule by the Federal Communications Commission (FCC). Use of spectrum bands above 24 GHz for mobile radio services, January 2016. https://apps.fcc.gov/edocspublic/attachmatch/FCC-15-138A1.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar Ichkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ichkov, A., Atanasovski, V. & Gavrilovska, L. Potentials for Application of Millimeter Wave Communications in Cellular Networks. Wireless Pers Commun 92, 279–295 (2017). https://doi.org/10.1007/s11277-016-3850-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3850-3

Keywords

Navigation