[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper is concerned with a wireless multiple-antenna system operating in multiple-input multiple-output (MIMO) fading channels with channel state information being known at both transmitter and receiver. By spatiotemporal subchannel selection and power control, it aims to minimize the average transmit power (ATP) of the MIMO system while achieving an exponential type of average bit error rate (BER) for each data stream. Under the constraints on each subchannel that individual outage probability and average BER are given, based on a traditional upper bound and a dynamic upper bound of Q function, two closed-form ATP expressions are derived, respectively, which can result in two different power allocation schemes. Numerical results are provided to validate the theoretical analysis, and show that the power allocation scheme with the dynamic upper bound can achieve more power savings than the one with the traditional upper bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10(6), 585–596.

    Article  Google Scholar 

  2. Kiessling, M. (2005). Unifying analysis of ergodic MIMO capacity in correlated Rayleigh fading environments. European Transactions on Telecommunications, 16(1), 17–35.

    Article  Google Scholar 

  3. Jin, S., McKay, M. R., Gao, X., & Collings, I. B. (2008). MIMO multichannel beamforming: SER and outage using new eigenvalue distributions of complex noncentral Wishart matrices. IEEE Transactions on Communications, 56(3), 424–434.

    Article  Google Scholar 

  4. Zheng, L., & Tse, D. N. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels. IEEE Transactions on Information Theory, 49(5), 1073–1096.

    Article  MATH  Google Scholar 

  5. Lozano, A., & Jindal, N. (2010). Transmit diversity vs. spatial multiplexing in modern MIMO systems. IEEE Transactions on Wireless Communications, 9(1), 186–197.

    Article  Google Scholar 

  6. Falou, A. E., Hamouda, W., Langlais, C., Nour, C. A., & Douillard, C. (2003). Finite-SNR diversity-multiplexing tradeoff for Rayleigh MIMO channels. IEEE Communications Letters, 17(4), 753–756.

    Article  Google Scholar 

  7. Hayes, J. F. (1968). Adaptive feedback communication. IEEE Transactions on Communications, 16(1), 29–34.

    Article  Google Scholar 

  8. Caire, G., & Kumar, K. R. (2007). Information theoretic foundations of adaptive coded modulation. Proceedings of the IEEE, 95(12), 2274–2298.

    Article  Google Scholar 

  9. Palomar, D. P., Cioffi, J. M., & Lagunas, M. A. (2003). Joint Tx-Rx beamforming design for multicarrier MIMO channels: A unified framework for convex optimization. IEEE Transactions on Signal Processing, 51(9), 2381–2401.

    Article  Google Scholar 

  10. Palomar, D. P., Cioffi, J. M., & Lagunas, M. A. (2003). Uniform power allocation in MIMO channels: A game-theoretic approach. IEEE Transactions on Information Theory, 49(7), 1707–1727.

    Article  MathSciNet  MATH  Google Scholar 

  11. Ordóñez, L. G., Palomar, D. P., & Fonollosa, J. R. (2009). Ordered eigenvalues of a general class of Hermitian random matrices with application to the perforamance analysis of MIMO systems. IEEE Transactions on Signal Processing, 57(2), 672–689.

    Article  MathSciNet  Google Scholar 

  12. Ordóñez, L. G., Palomar, D. P., Pagès-Zamora, A., & Fonollosa, J. R. (2009). Minimum BER linear MIMO transceivers with adaptive number of substreams. IEEE Transactions on Signal Processing, 57(6), 2336–2353.

    Article  MathSciNet  Google Scholar 

  13. Zanella, A., & Chiani, M. (2012). Reduced complexity power allocation strategies for MIMO systems with eigen value decomposition. IEEE Transactions on Vehicular Technology, 61(9), 4031–4041.

    Article  Google Scholar 

  14. Xiong, F. (2006). Digital modulation techniques (2nd ed.). London: Artech House Inc.

    MATH  Google Scholar 

  15. Paulraj, A. J., Nabar, R., & Gore, D. (2003). Introduction to space-time wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  16. Zhou, S., & Giannakis, G. B. (2003). Optimal transmitter eigen-beamforming and space-time block coding based on channel correlations. IEEE Transactions on Information Theory, 49(7), 1673–1690.

    Article  MathSciNet  MATH  Google Scholar 

  17. Rangarajan, A., Sharma, V., & Singh, S. K. (2003). Information-theoretic and communication-theoretic optimal power allocation for fading channels. In Proceedings of the IEEE international symposium on information theory (ISIT). Yokohama, Japan.

  18. Rangarajan A., & Sharma, V. (2004). Achieving exponential diversity order in Rayleigh-fading channels. In Proceedings national conference on communications (NCC)

  19. Premkumar, K., Sharma, V., & Rangarajan, A. (2004). Exponential diversity achieving spatio-temporal power allocation scheme for fading channels. DRDO-IISc program on mathematical engineering, IISc, Bangalore 560 012, India, Tech. Rep., TR-PME-2004-08. Available: http://www.pal.ece.iisc.ernet.in/PAM.

  20. Sharma, V., Premkumar, K., & Swamy, R. N. (2008). Exponential diversity acheiving spatio-temporal power allocation scheme for fading channel. IEEE Transactions on Information Theory, 54(1), 188–208.

    Article  MathSciNet  MATH  Google Scholar 

  21. Ganesh, V., & Jalihal, D. (2007). Power allocation For MISO channel With co-ordinate interleaving technique. IEEE Signal Processing Letters, 14(5), 309–312.

    Article  Google Scholar 

  22. Reddy, P. H. , Kumar, V. N. , Khan, M. Z. A. , & Srinivas, M. B. (2007). Optimal power allocation in space and time in MISO Rayleigh fading channels with peak to average power ratio constraint. 2007 IEEE Sarnoff symposium, 2007.

  23. Khan, M. Z. A. (2008). Achieving exponential diversity in all fading channels. 24th Biennial symposium on commnunications, 2008 (pp. 274–277).

  24. Müller, A., & Speidel, J. (2009). Achieving exponential diversity in wireless multihop systems with regenerative relays. IEEE interantional conference on commnunications (ICC’09), 2009.

  25. Khan, M. Z. A. (2011). Achieving exponential diversity with spatio-temporal power allocation with imperfect channel state information. In Proceedings of national conference on communications (NCC), 2011.

  26. Khan, M. Z. A. (2011). On achieving exponential diversity with partial channel state information in MIMO fading channels. In 7th International wireless communications and mobile computing conference (IWCMC), 2011 (pp.125–129).

  27. Larrson, E. G., & Stoica, P. (2003). Space-time block coding for wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  28. Li, G. Y., Xu, Z., Xiong, C., Yang, C., Zhang, S., Chen, Y., et al. (2011). Energy-efficient wireless communications: Tutorial, survey, and open issues. IEEE Wireless Communications, 18(6), 28–35.

    Article  Google Scholar 

  29. Feng, D., Jiang, C., Lim, G., Cimini, L. J, Jr., Feng, G., & Li, G. Y. (2013). A survey of energy-efficient wireless communications. IEEE Communications Surveys and Tutorials, 15(1), 167–178.

    Article  Google Scholar 

  30. Gupta, A. K., & Nagar, D. K. (2000). Matrix variate distributions. Boca Raton: Chapman and Hall/CRC.

    MATH  Google Scholar 

  31. Raleigh, G. G., & Cioffi, J. M. (1998). Spatio-temporal coding for wireless communication. IEEE Transactions on Communications, 46(3), 357–366.

    Article  Google Scholar 

  32. Lebrun, G., Ying, T., & Faulkner, M. (2002). MIMO transmission overa timevarying channel using SVD. In Proceedings of the IEEE global telecommunications conference (pp. 414–418). Taipei, Taiwan.

  33. Goldsmith, A. (2005). Wireless communications. Cambrige: Cambrige University Press.

    Book  Google Scholar 

  34. Wang, Z., & Giannakis, G. B. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.

    Article  Google Scholar 

  35. Lee, Y. H., & Bar-Ness, Y. (2003). Power adaptation for BPSK signaling with average and peak power constraints in Rayleigh fading channels. IEEE Transactions on Communications, 51(11), 1871–1876.

    Article  Google Scholar 

  36. Zanella, A., & Chiani, M. (2008). The PDF of the \(l\)-th largest eigenvalue of central Wishart matrices and its application to the performance analysis of MIMO systems. In IEEE Golbal Telecommunications Conference (GLOBECOM), 2008.

  37. Andews, L. C. (1998). Speical functions of mathematics for engineering. Oxford: Oxford University Press.

    Google Scholar 

  38. Alouini, M. S., & Goldsmith, A. (1999). Capacity of Rayleigh fading channels under different adaptive transmission and diversity-combining techniques. IEEE Transactions on Vehicular Technology, 48(4), 1165–1181.

    Article  Google Scholar 

  39. Bölckei, H., Gesbert, D., & Paulraj, A. J. (2002). On the capacity of OFDM-based spatial muliplexing systems. IEEE Transactions on Communications, 50(2), 225–234.

    Article  Google Scholar 

  40. Bölckei, H., Borgmann, M., & Paulraj, A. J. (2003). Impact of the propagation environment on the performance of space-frequency coded MIMO-OFDM. IEEE Journal on Selected Areas in Communications, 21(3), 427–439.

    Article  Google Scholar 

  41. McKay, M. R., & Collings, I. B. (2006). On the capacity of frenquency-flat and frequency-selective Rician MIMO channels with single-ended correlation. IEEE Transactions on Wireless Communications, 5(8), 2038–2043.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Scheme of Research Exchanges with China and India, the Royal Academy of Engineering of UK, the Specialized Research Fund for the Doctoral Program of Higher Education under Grant 20132125110006, and the open research fund of Zhejiang Provincial Key Lab of Data Storage and Transmission Technology, Hangzhou Dianzi University, under Grant 201401.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dian-Wu Yue.

Appendix

Appendix

The proof of Proposition 1

Since \(\overline{P}_b(i) \le \frac{\xi _i}{2} \frac{\overline{\lambda }_{\mathrm{out}}(i)}{\overline{\lambda }_{\mathrm{mea}}(i)}\), then it follows from Lemma 2 that \(\lambda _0(i)=\overline{\lambda }_{\mathrm{out}}(i)\). Furthermore, we can have

$$\begin{aligned} \hat{\rho }^{(i)} \left( \overline{P}_b(i),P_{\mathrm{out}}^{(i)}\right) =\int _{\overline{\lambda }_{\mathrm{out}}(i)}^{\infty }p_i f_i(\lambda _i)d\lambda _i. \end{aligned}$$
(60)

Substituting (29) into (60), we obtain

$$\begin{aligned} \hat{\rho }^{(i)} \left( \overline{P}_b(i),P_{\mathrm{out}}^{(i)}\right)= & {} \int _{\overline{\lambda }_{\mathrm{out}}(i)}^{\infty }\frac{\widehat{\hbox {SNR}}(i)}{\lambda _i} f_i(\lambda _i)d\lambda _i\nonumber \\&+\int _{\overline{\lambda }_{\mathrm{out}}(i)}^{\infty }\frac{2}{\beta _i\lambda _i} \ln \left( \frac{\lambda _i\Delta (i)}{\overline{\lambda }_{\mathrm{out}}(i)}\right) f_i(\lambda _i)d\lambda _i. \end{aligned}$$
(61)

With respect to (61), we define

$$\begin{aligned} \rho _s \left( \widehat{\hbox {SNR}}(i),\overline{\lambda }_{\mathrm{out}}(i)\right) =\int _{\overline{\lambda }_{\mathrm{out}}(i)}^{\infty }\frac{\widehat{\hbox {SNR}}(i)}{\lambda _i} f_i(\lambda _i)d\lambda _i \end{aligned}$$
(62)

and

$$\begin{aligned} \rho _{\Delta } \left( \overline{\lambda }_{\mathrm{out}}(i)\right) =\int _{\overline{\lambda }_{\mathrm{out}}(i)}^{\infty }\frac{2}{\beta _i\lambda _i} \ln \left( \frac{\lambda _i\Delta (i)}{\overline{\lambda }_{\mathrm{out}}(i)}\right) f_i(\lambda _i)d\lambda _i. \end{aligned}$$
(63)

In what follows, we consider to derive (62) and (63), respectively. \(\square\)

From Lemma 1 in [36], the marginal p.d.f. of the \(i\)-th largest eigenvalue \(\lambda _i\) can be written as

$$\begin{aligned} f_i(\lambda _i)=\sum _{k=i}^m(-1)^{k-i}{k-1 \atopwithdelims ()i-1}{m \atopwithdelims ()k}f_{\mathrm{min:}k}(\lambda _i) \end{aligned}$$
(64)

where \(f_{\mathrm{min:}k}(x)\) denotes the p.d.f. of the smallest random variable considered in a subset of k random variables over the set of all eigenvalues, and is given by

$$\begin{aligned} f_{\mathrm{min:}k}(x) &= \frac{kC}{m!}\sum _{{\mathcal {\alpha }}} \sum _{{\mathcal {\mu }}} \hbox {sgn}({\mathcal {\alpha }})\hbox {sgn} ({\mathcal {\mu }})A_{k}({\mathcal {\alpha }},{\mathcal {\mu }}) \nonumber \\&\times \,e^{-kx}{\mathbb {\sum }}_{{\mathcal {\tau }}} x^{\theta +\alpha _k+\mu _k-2+\sum _{\iota =1}^{k-1}\tau _{\iota }} \prod _{\iota =1}^{k-1}\frac{(\theta +\alpha _{\iota }+\mu _{\iota }-2)!}{\tau _{\iota }!}. \end{aligned}$$
(65)

With the help of the complementary incomplete gamma function \(\Gamma (q,x)\), thus we can obtain the desired result (43) after a simple derivation.

The derivation of (63) is similar, but involves a process employing the following special function \(\jmath _q(x)\) defined as [38]:

$$\begin{aligned} \jmath _q(x) &= \int _1^\infty t^{q-1}\ln t e^{-xt}dt\nonumber \\= & {} \frac{(q-1)!}{x^q}\sum _{k=0}^{q-1}\Gamma (k,x)/k!. \end{aligned}$$
(66)

Finally, again making use of (64), we can easily obtain the desired expression of \(\rho _{\Delta }(\overline{\lambda }_{\mathrm{out}}(i))\) (44).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, DW., Sun, Y. Transmit Power Minimization for MIMO Systems of Exponential Average BER with Fixed Outage Probability. Wireless Pers Commun 90, 1951–1970 (2016). https://doi.org/10.1007/s11277-016-3432-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3432-4

Keywords

Navigation