[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A Novel Approach for Low Insertion Loss, Multi-band, Capacitive Shunt RF–MEMS Switch

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents a novel capacitive shunt RF-MEMS switch. In the proposed design, broadside bridge structure joined with two cantilevers on either side has been used to implement the switch. The transmission line and actuation electrodes under the bridge are designed in the interdigitated form to reduce the area. Switch shows an insertion loss better than 0.11 dB, a return loss below 23.67 dB up to 25 GHz. In down-state, three resonant peaks of 34.71, 34.33 and 40.7 dB at 10.4, 11.0 and 21.4 GHz have been achieved as compared to a single peak in the case of the conventional switch. The proposed device has a bandwidth of 2.2 GHz in X-band and 5.2 GHz in K-band. Bridge structure shows a pull-in voltage of 12.25 V, actuation time of 34.40 µs while cantilevers have 7.5 V and 57 µs. Further, the electrical equivalent model has been presented to represent the switch. The model has been implemented in commercially available software. A good agreement with the 3-D electromagnetic simulated results validates the presented model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Tilmans, H. A. C., Raedt, W. D., & Beyne, E. (2003). MEMS for wireless communications from RF-MEMS components to RF-MEMS SiP. Journal of Micromechanics and Microengineering, 13, 139–163.

    Article  Google Scholar 

  2. Brown, E. R. (1998). RF-MEMS switches for reconfigurable integrated circuits. IEEE Transaction on Microwave Theory and Techniques, 46, 1868–1880.

    Article  Google Scholar 

  3. Rebeiz, G. M. (2003). RF MEMS theory, design and technology (2nd ed.). New Jersey: Wiley.

    Google Scholar 

  4. Rangra, K. (2005). Electrostatic low actuation voltage RF MEMS switches for telecommunications, Ph.D. Thesis, Department of Information Technology, University of Trento, Trento, Italy.

  5. Rangra, K., Margesin, B., Lorenzelli, L., Giacomozzi, F., Collinni, C., Zen, M., et al. (2005). Symmetric toggle switch—a new type of rf MEMS switch for telecommunication applications: Design and fabrication. Sensors and Actuators A, 123–124, 505–514.

    Article  Google Scholar 

  6. Angira, M., & Rangra, K. J. (2014). Design and investigation of a low insertion loss, broadband, enhanced self and hold down power RF-MEMS switch. Journal of Microsystem Technologies. doi:10.1007/s00542-014-2188-6.

    Google Scholar 

  7. Angira, M., Sundaram, G. M., & Rangra, K. J. (2014). A novel interdigitated, inductively tuned, capacitive shunt RF—MEMS switch for X and K bands applications (pp. 139–142). Hawaii, USA: Proceeding of NEMS.

    Google Scholar 

  8. DiNardo, S., Farinelli, P., Giacomozzi, F., Mannocchi, G., Marcelli, R., Margesin, B., Mulloni, P.M., Russer V., Sorrentino, R., Vitulli, F.,Vietzorreck, L. (2006). Broadband RF-MEMS based SPDT. In Proceeding of European microwave conference, Manchester (pp. 1727–1730).

  9. Entesari, K., & Rebeiz, G. M. (2005). Differential 4-bit 6.5–10 GHz RF MEMS tunable filter. IEEE Transaction on Microwave Theory and Techniques, 53, 1103–1110.

    Article  Google Scholar 

  10. Kang, S., Kim, H. C., & Chun, K. (2009). A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive. Journal of Micromechanics and Microengineering, 19, 35011–35021.

    Article  Google Scholar 

  11. Peroulis, D., Pacheco, S., Sarabandi, M., & Katehi, L. P. B. (2000). MEMS devices for high isolation switching and tunable filtering (pp. 1217–1220). Boston: IEEE MTT-S Microwave Symposium Digest.

    Google Scholar 

  12. Entesari, K., & Rebeiz, G. M. (2005). Differential 4-bit 6.5–10-GHz RF MEMS tunable filter. IEEE Transactions on Microwave Theory and Techniques, 53, 1103–1110.

    Article  Google Scholar 

  13. Armenta, C. J. A., Porter, S., & Marvin, A. (2012). Reconfigurable phased array antennas with RF-MEMS on a PCB substrate (pp. 1–5). Loughborough: Proceeding of Antennas & Propagation.

    Google Scholar 

  14. Rebeiz, G. M., Tan, G. L., & Hayden, J. S. (2002). RF MEMS phase shifters: Design and applications. IEEE Microwave Magazine, 3, 72–81.

    Article  Google Scholar 

  15. Fomani, A. A., & Mansour, R. R. (2009). Miniature RF MEMS switch matrices (pp. 1221–1224). Boston: Proceeding of IEEE MTT-S Microwave Symposium Digest.

    Google Scholar 

  16. Angira, M., Sundaram, G. M., Rangra, K. J., Bansal, D., & Kaur, M. (2013). On the investigation of an interdigitated, high capacitance ratio shunt RF-MEMS switch for X-band applications (Vol. 2, pp. 189–192). Washington, DC: Proceeding of NSTI Nanotech.

    Google Scholar 

  17. Bansal, D., Kumar, A., Sharma, A., Kumar, P., & Rangra, K. J. (2013). Design of novel compact anti-stiction and low insertion loss RF MEMS switch. Journal of Microsystem Technologies. doi:10.1007/s00542-013-1812-1S.

    Google Scholar 

  18. Fouladi, S., & Mansour, R. R. (2010). Capacitive RF MEMS switches fabricated in 0.35 μm CMOS technology. IEEE Transaction on Microwave Theory and Techniques, 58, 478–485.

    Article  Google Scholar 

  19. Muldavin, J. B., & Rebeiz, G. M. (2000). High-isolation CPW MEMS shunt switches—Part 1: Modeling. IEEE Transaction on Microwave Theory and Techniques, 48, 1045–1052.

    Article  Google Scholar 

  20. Muldavin, J.B., Rebeiz, G.M. (2000). Novel series and shunt MEMS switch geometries for X-band applications. In Proceeding of European Microwave Conference, Paris (pp. 1–4).

  21. Muldavin, J.B., Rebeiz, G.M. (2001). Novel DC-contact MEMS shunt switches and high-isolation series/shunt designs. In Proceeding of European Microwave Conference, London (pp. 1–3).

  22. Mohameed, R., Tanan, M. A. E., & Rebeiz, G. M. (2010). A zipper RF MEMS tunable capacitor with interdigitated RF and actuation electrodes. Journal of Micromechanics and Microengineering, 20, 14–19.

    Google Scholar 

  23. Giacomozzi, F., Calaza, C., Colpo, S., Mulloni, V., Collini, A., Margesini, B., et al. (2008). Development of high con coff ratio RF MEMS shunt switches. Romanian Journal of Information Science and Technology, 11, 143–151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahesh Angira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angira, M., Sundaram, G.M. & Rangra, K.J. A Novel Approach for Low Insertion Loss, Multi-band, Capacitive Shunt RF–MEMS Switch. Wireless Pers Commun 83, 2289–2301 (2015). https://doi.org/10.1007/s11277-015-2521-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2521-0

Keywords

Navigation