[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Maximum Likelihood Approach for RFID Tag Set Cardinality Estimation with Detection Errors

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Estimation schemes of Radio Frequency IDentification (RFID) tag set cardinality are studied in this paper using Maximum Likelihood (ML) approach. We consider the estimation problem under the model of multiple independent reader sessions with detection errors due to unreliable radio communication links and/or collisions. In every reader session, both the detection error probability and the total number of tags are estimated. In particular, after the \(R\)-th reader session, the number of tags detected in \(j\) (\(j=1,2,...,R\)) reader sessions out of \(R\) sessions is updated, which we call observed evidence. Then, in order to maximize the likelihood function of the number of tags and the detection error probability given the observed evidences, we propose three different estimation methods depending on how to treat the discrete nature of the tag set cardinality. The performance of the proposed methods is evaluated under different system parameters and compared with that of the conventional method via computer simulations assuming flat Rayleigh fading environments and framed-slotted ALOHA based protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. \(\sum _{m=1}^{\infty }\frac{1}{m^2}\) is known as the Basel problem and the value is known to be \(\pi ^2/6=\zeta (2)\), where \(\zeta (s)\) is the Riemann zeta function defined as \(\zeta (s)=\sum _{n=1}^{\infty }\frac{1}{n^s}\) [25].

References

  1. Finkenzeller, K. (2003). RFID handbook: Fundamentals and applications in contactless smart cards and identification. London: Wiley.

    Google Scholar 

  2. Angeles, R. (2005). RFID technologies: Supply-chain applications and implementations issues. Information Systems Management, 22(1), 51–65.

    Article  MathSciNet  Google Scholar 

  3. Molnar, D., & Wagner, D. (2004). Privacy and security in library RFID: Issues, practices, and architectures. In: Proceedings of the 11th ACM conference on computer and communication, security, pp. 210–219.

  4. Ni, L. M., Zhang, D., & Souryal, M. R. (2011). RFID-based localization and tracking technologies. IEEE Wireless Communications Magazine, 18(2), 45–51.

    Article  Google Scholar 

  5. Savíc, V., Athalye, A., Bolíc, M., & Djuric, P. M. (2011). Particle filtering for indoor RFID tag tracking. In: Proceedings of the IEEE statistical signal processing, workshop, pp. 193–196.

  6. Bolíc, M., Simplot-Ryl, D., & Stojmenovíc, I. (2010). RFID systems: Research trends and challenges. London: Wiley.

    Book  Google Scholar 

  7. Ali, K., & Hassanein, H. (Jan 2009). Passive RFID for intelligent transportation systems. In: Proceedings of the 6th IEEE consumer communications and networking conference, pp. 1–2.

  8. Qian, C., Ngan, H., Liu, Y., & Ni, L. M. (2011). Cardinality estimation for large-scale RFID systems. IEEE Transactions on Parallel and Distributed Systems, 22(9), 1441–1454.

    Article  Google Scholar 

  9. Lu, L., Han, J., Hu, L., Liu, Y., & Ni, L. M. (2007). Dynamic key-updating: Privacy-preserving authentication for RFID systems. In: Proceedings of the annual IEEE international conference on pervasive computing and communications, pp. 13–22.

  10. Sheng, B., Tan, C. C., Li, Q., & Mao, W. (2008). Finding popular categories for RFID tags. In: Proceedings of the ACM mobihoc.

  11. Vogt, H. (Apr 2002). Efficient object identification with passive RFID tags. In: Proceedings of international conference on pervasive computing, pp. 98–113.

  12. Schoute, F. C. (1983). Dynamic frame length ALOHA. IEEE Transactions on Communications, 31(4), 565–568.

    Article  Google Scholar 

  13. Chen, W.-T. (2009). An accurate tag estimate method for improving the performance of an RFID anticollision algorithm based on dynamic frame length ALOHA. IEEE Transaction on Automation Science and Engineering, 6(1), 9–15.

    Article  Google Scholar 

  14. Chaves, L. W. F., Buchmann, E., & Böhm, K. (2008). Tagmark: Reliable estimations of RFID tags for business processes. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp. 999–1007.

  15. RFID for Logistic Applications - Test Results, in EPCglobal Inc., 2005.

  16. Sze, W.-K., Lau, W.-C., & Yue, O.-C. (June 2009). Fast RFID counting under unreliable radio channel. In: Proceedings of the IEEE internation conference in communications, pp. 1–5.

  17. Mansouri, V. S., & Wong, V. W. S. (2011). Cardinality estimation in RFID systems with multiple readers. IEEE Transactions on Communications, 10(5), 1458–1469.

    Google Scholar 

  18. Kim, D.-Y., Yoon, H.-G., Jang, B.-J., & Yook, J.-G. (2009). Effects of reader-to-reader interference on the UHF RFID interrogation range. IEEE Transactions on Communications, 57(7), 2337–2346.

    Google Scholar 

  19. Jacobsen, R., Nielsen, K. F., Popovski, P., & Larsen, T. (Apr 2009). Reliable identification of RFID tags using multiple independent reader sessions. In: Proceedings of the IEEE international conference on RFID, pp. 64–71.

  20. Popovski, P., Fyhn, K., Jacobsen, R., & Larsen, T. (2011). Robust statistical methods for detection of missing RFID tags. IEEE Wireless Communications, 18(4), 74–80.

    Article  Google Scholar 

  21. Fyhn, K., Jacobsen, R. M., Popovski, P., & Larsen, T. (2012). Fast capture-recapture approach for mitigating the problem of missing RFID tags. IEEE Transactions on Mobile Computing, 11(3), 518–528.

    Article  Google Scholar 

  22. Schnabel, Z. E. (1938). The estimation of total fish population of a lake. The American Mathematical Monthly, 45(6), 348–352.

    Article  MathSciNet  MATH  Google Scholar 

  23. Yip, P. (1991). A martingale estimating equation for a capture-recapture experiment in discrete time. Biometrics, 47(3), 1081–1088.

    Article  MathSciNet  Google Scholar 

  24. Anderson, G. D., & Qiu, S.-L. (Nov 1997) A monotoneity property of the gamma function. In: Proceedings of the American Mathematical Society 125(11), pp. 3355–3362.

  25. Patterson, S. J. (1988). An introduction to the theory of the Riemann Zeta-function. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  26. Abramowitz, M., & Stegun, I. A. (1972) Handbook of mathematical functions: With formulas, graphs, and mathematical tables, New York.

  27. Islam, M., Samad, S. A., Hannan, M. A., & Hussain, A. ( Oct 2010). Software defined radio for RFID signal in rayleigh fading channel. In: Proceedings of the IEEE region 10 conference TENCON, pp. 1368–1372.

  28. He, C., & Wang, Z. J. (2011). Closed-form BER analysis of non-coherent FSK in MISO double rayleigh fading/RFID channel. IEEE Communications Letters, 15(8), 848–850.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuyen T. Nguyen.

Additional information

Part of this paper was presented at 2011 APSIPA Annual Summit and Conference.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, C.T., Hayashi, K., Kaneko, M. et al. Maximum Likelihood Approach for RFID Tag Set Cardinality Estimation with Detection Errors. Wireless Pers Commun 71, 2587–2603 (2013). https://doi.org/10.1007/s11277-012-0956-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0956-0

Keywords

Navigation